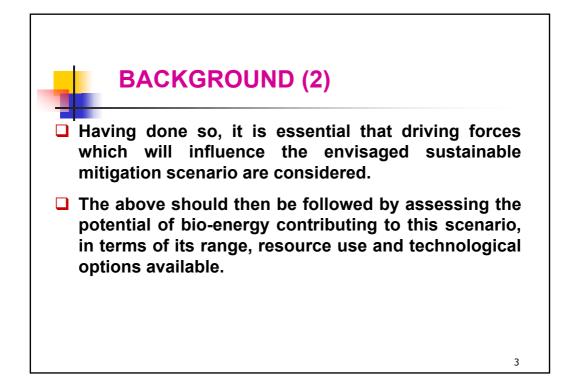
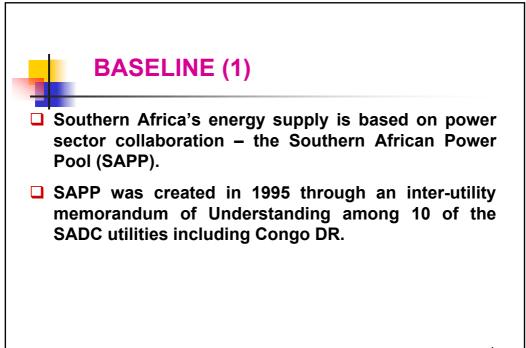
Joint CARENSA, SPARK-NET and LAMNET Workshop on Bio-Energy

Durban, South Africa

19th - 21st August 2002


CDM Opportunities in Southern Africa, and the Role of Bio-Energy in Contributing to a Sustainable Regional Energy Mitigation Scenario


Prof. F. D. Yamba Centre for Energy, Environment and Engineering Zambia Private Bag E721 Lusaka, ZAMBIA Tel/Fax: +260 - 1 - 240267 Email: ceeez@coppernet.zm / yamba@eng.unza.zm

BACKGROUND (1)

- Following the Marrakech Accord which approved general rules and procedures for CDM to take effect, and possible ratification after the WSSD conference in Johannesburg in the next week, it is essential that the role of bio-energy is assessed in contributing to sustainable Southern Africa Region energy mitigation scenario.
- □ For the region to arrive at such a scenario, it is natural that the present status quo, baseline in supply in the region, and its projection into the future are considered

1

BASELINE (2)

□ Aims of SAPP:

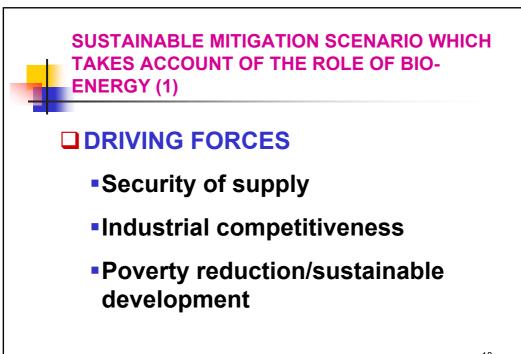
- To increase regional security of supply
- To smoothen load curves
- To engender economies of scale in the supply base
- To increase revenue for exporting countries by opening up a ready market
- To share power to meet national shortfalls and to off set temporary deficits in the medium term, and in the long term to adopt and implement power sharing as an operational strategy aimed at maximising financial and environmental benefits.

Country	Available	Peak	Sources & Shares											
	Capacity (MW)	Demand (mw)	Hydro MW	%	Coal MW	%	Diesel/ G MW	G.Turbine %	Natural G MW	as %	Wind MW %	Biomass MW %	Other & Nuclear	
Angola	326.0	180	200.8	61.6			125.2	38.4						
Botswana	172	205			172	100								
Congo DR	2560.8	600	2522.39	98.5			12.8	0.5	25.61	1.0				
Lesotho	4.9	80	3.3	67.4			1.6	32.6						
Malawi	243.7	150	219.1	89.9			24.6	10.1						
Mozambique	2075		2075.0	100										
Namibia	387	277	240	62.0	120	31.0	27.0	7.0						
South Africa	35, 951	25, 133	107.9	0.2	330.4	92							2804.2	7.8
Swaziland	50	117.5	40.0	80.0										
Tanzania	525	71.4	375	71.4			10							
Zambia	1750.5	1300	1670	95.0			150			1				
Zimbabwe	1722		516.6	30	120	7.0	80.5	4.7						
TOTAL	45, 767	1	7970	17.4		75.5	431.7	1.0	25.61	0.5			2804.2	5.0

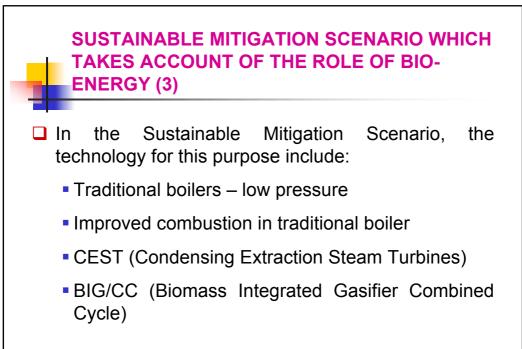
1995 STATUS QUO & BASELINE ENERGY CAPACITY

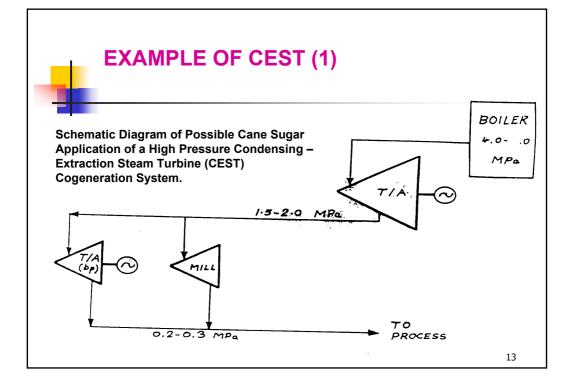
SADC PROJECTED ENERGY PEAK DEMAND/SUPPLY (GJ) (1)

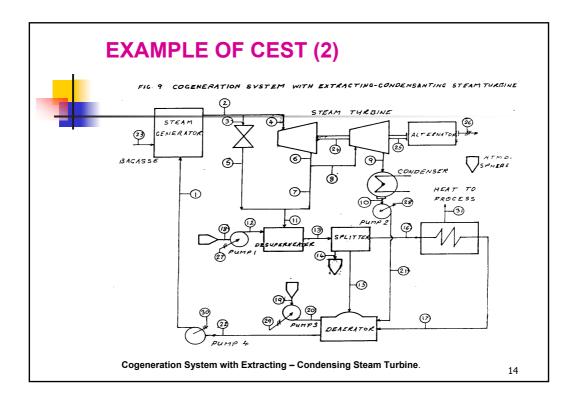
Assumptions:

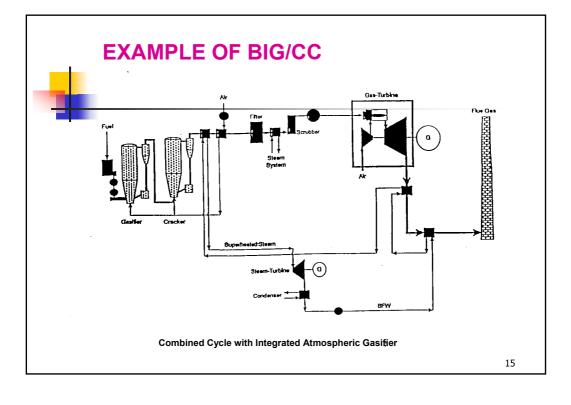

• Electric growth rates

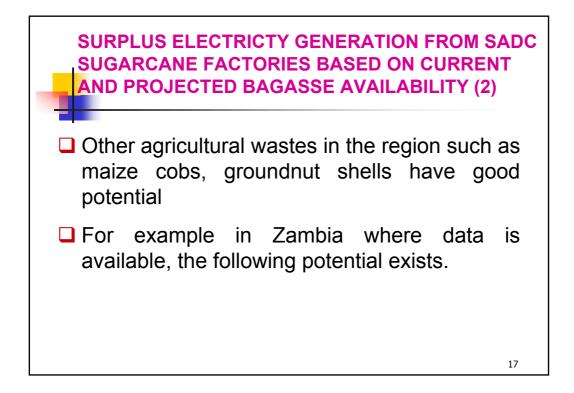
	<u>2015-2020</u>	<u>2020-2050</u>
South Africa	2.0%	1.5%
Rest	3.5%	2.5%


 The projected energy supply has been arrived at taking into account national utility plans and also experts' assessment on the energy natural resource potential of each SADC country


	1995		2030		2050	
Demand	45.8		73.5		101.70	
Supply	GJ	%	GJ	%	GJ	%
(i) Coal	34.5	75.5			76, 294.65	60
(ii) Hydro	7.97	17.4			41, 247.15	32
(iii) Diesel/ Gas turbines	0.43	1.0			253.05	0.2
(iv) Natural Gas/CBM	0.025	0.5			759.15	0.6
(v) Wind (vi) Biomass	-				607.32	0.4
(vii)Other/nuclear	2.804	5.6			1897.88	1.5
TOTAL	45.8				126, 525	

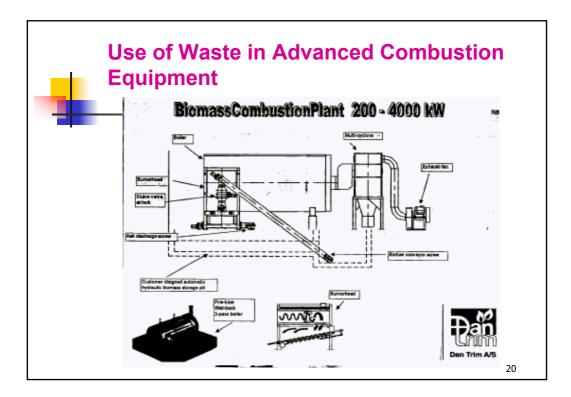

Country	Capacity (MW)	Predominant Source
Angola	4013	Hydro
Botswana	187	Coal/imports
Congo DR	14, 676	Hydro
Lesotho	211	Imports
Malawi	678	Hydro
Mozambique	8234	Hydro
Namibia	894	Imports
South Africa	77, 171	Coal
Swaziland	109	Imports
Tanzania	5749	Coal/Natural Gas/Import
Zambia	5759	Hydro
Zimbabwe	8844	Coal/hydro/imports
TOTAL	126, 525	



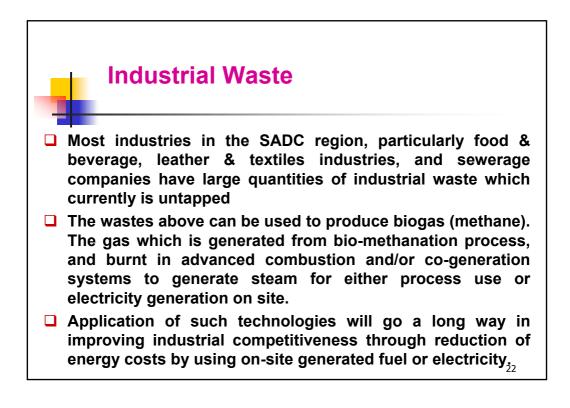


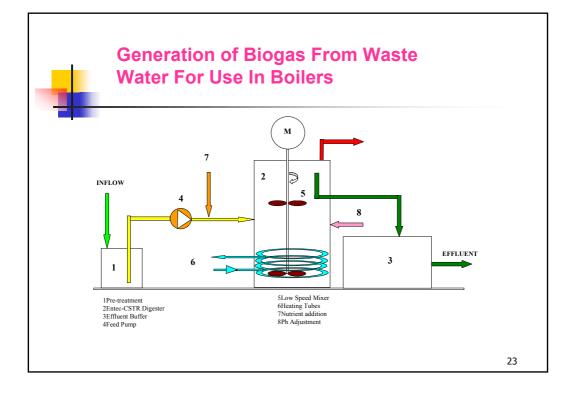
FRO	OM SADC	SUGARCAN	LECTRICTY G E FACTORIES BAGASSE A	BASE	D ON
Year	Bagasse Resource (millions)	Traditional Boilers (MW)	Traditional Boilers with Improved Combustion* (MW)	CEST (MW)	BIG/CC (MW)
2000	50.0	Negligible	750	1500	3000
2020	80	Negligible	1250	2500	5000
2030	100	Negligible	1500	3200	6500
2050	180	Negligible	2600	5500	11000

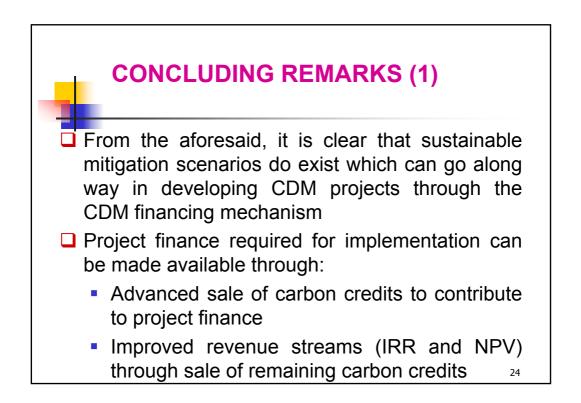
*Also involves optimisation of steam generation and utilisation

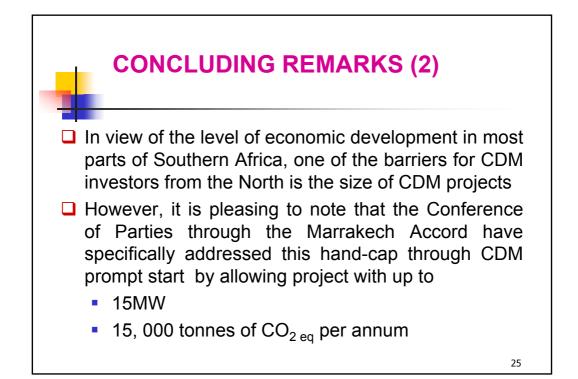

Source: Study on Luena Sugarcane Resources and Mauritius Experience

i 📕 i	AVAILABLI POTENTIAI PRODUCTS	FROM	OTHER A		
Crop	Average Yield (tonnes)	Residue Ratio	Available Potential (tonnes)	Available Potential (MJ million)	Economic Energy Potential (MW)
Maize Cobs	1, 000, 000	0.3	300, 000	5.61	10
Ground- nut shells	50, 000	0.3	15, 000	0.23	0.5
Millet Straw	50, 000	1.2	60, 000	0.9	1.2
Cotton stalks	60, 000	3.0	180, 000	3.29	4.5 18


AVAILABLE AND ECONOMIC ENERGY POTENTIAL FROM OTHER AGRICULTURAL **PRODUCTS (ZAMBIA) (2)** Such material base be raw can used in decentralised situations and particularly suitable for rural areas where the national grid does not reach. Use of such material will result in provision of electricity in such areas required for income generating activities. □ The technology can be either gasification systems or advanced combustion systems based on internal steam engines


19




Technology Characteristics Summary

Output (electricity), kW	Capital Cost Per kW (US\$)
5 – 500	900 – 3, 000
30 – 1, 500	1, 000 – 3, 500
0-50, 000	900 - 3, 000
0-60, 000	900 – 3, 000
	(electricity), kW 5 - 500 30 - 1, 500 0-50, 000

