

Bioenergy in FAO Focus on: Development and Environment

International Conference on Bioenergy and Liquid Biofuel Development and Utilization

7th LAMNET Project Workshop – 20-23 April, 2004 Beijing, China

Gustavo Best
Senior Energy Coordinator
UN Food and Agriculture Organization
Rome, Italy

Bioenergy resources

Wood

Charcoal

Black Liquor

Forest residues

Energy crops (sugar, sorghum, rapeseed, vegetable oils, etc.)

Agro-residues

Animal residues and byproducts (manure, slaughterhouse residues)

Fast growing grasses

Bioenergy forms

Liquids

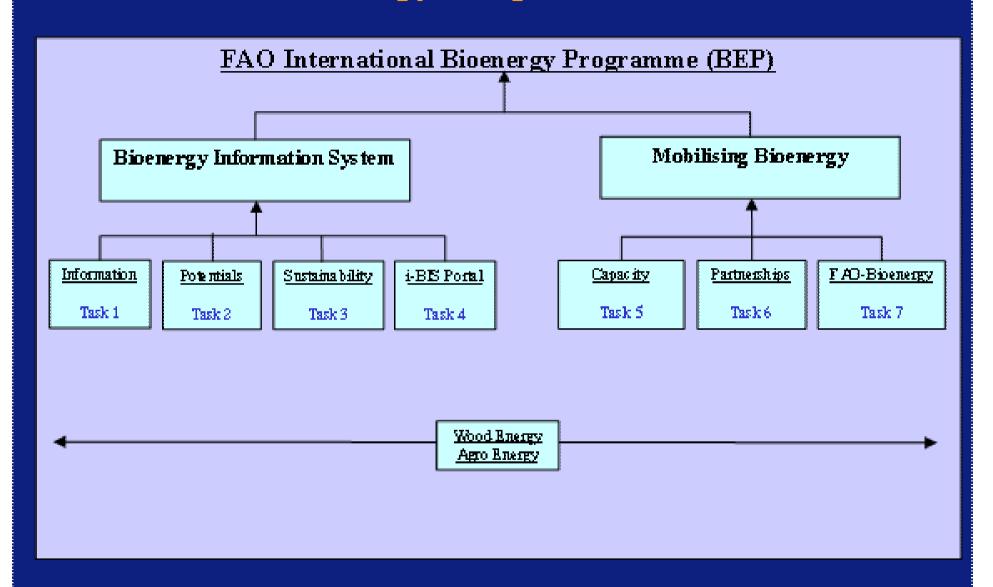
Ethanol Methanol Biodiesel Vegetable oils

Solids

Charcoal Briquettes

Gaseous

Hydrogen Methane



Bioenergy use: 50 EJ/a of 406 EJ/a total energy consumption (1997)

Use of biomass fuels in 13 countries of different economic, climatic, and demographic conditions (1980s)

	Total	Bio-	Share	Popu-	Total	Bioenergy
	energy	energy	of bio-	lation	energy	per
Country	consump.	consump.	energy	density	per cap.	capita
	[PJ]	[PJ]	[%]	[cap/km ²]	[GJ/cap]	[GJ/cap]
Austria	1,053	100	9.5	94.3	137	13.0
Germany	15,012	84	0.6	230.8	189	1.1
Japan	17,390	6	0.0	331.9	141	0.0
Poland	3,595	40	1.1	126.5	94	1.0
Sweden	1,971	230	11.7	21.1	230	26.8
USA	84,321	3,482	4.1	28.1	337	13.9
Brazil	5,155	1,604	31.1	18.5	35	10.8
China	36,632	9,287	25.4	129.2	32	8.1
Egypt	1,502	380	25.3	56.3	29	7.2
India	16,554	8,543	51.6	301.6	20	10.1
Malaysia	1,488	663	44.6	58.6	83	37.1
Tanzania	954	925	97.0	32.5	37	35.6
Zaire	435	362	83.2	18.2	12	9.7

FAO Biomass Energy Programme Schematic

OBJECTIVES

- Enhance rural development and food security
- Integration of bioenergy into the forestry and agricultural sectors
- Promotion of the potential of bioenergy in the energy market
- Promotion of bioenergy in climate change mitigation
- Promotion of sustainable management of bioenergy resources, conversion and use
- Promote benefits of energy trade to rural producers

INTEGRATION OF AGRO-ENERGY INTO THE AGRICULTURAL SECTOR

- Developing tools and methodologies for the rapid field assessment of agro-energy potential
- Integration of energy issues into agricultural policies, plans and programmes
- Undertaking capacity building, training and dissemination of information
- Involving the farmer in the decision-making process

PROMOTE THE POTENTIAL OF AGROENERGY FOR THE ENERGY MARKET

- Integration of agro energy into the national energy policies and balances
- More equal market for conventional and renewable energies
- Regulation of the energy market
- Stimulate r&d investments on new technologies

FOOD SECURITY AND RURAL DEVELOPMENT

-Stimulating the double role of agriculture as an energy user and an energy producer

- Promoting the generation of employment and rural infrastructure through the implementation of agro energy projects

CLIMATE CHANGE MITIGATION

- Promoting the substitution of fossil fuels
- Assessing the potential of different agro energy systems for GHG reduction
 - Mobilizing available mechanisms (CDM, GEF) for agroenergy technological development and application
- Providing assistance for the implementation of the Kyoto Protocol

Carbon reduction, substitution and conservation in Agriculture

Agricultural practices

Carbon reduction
Water management
Chemical inputs reduction
Agronomic research – new species
Carbon sequestration
Carbon conservation

Bioenergy

Carbon substitution
Biofuels
Electricity
Residue management
Biogas

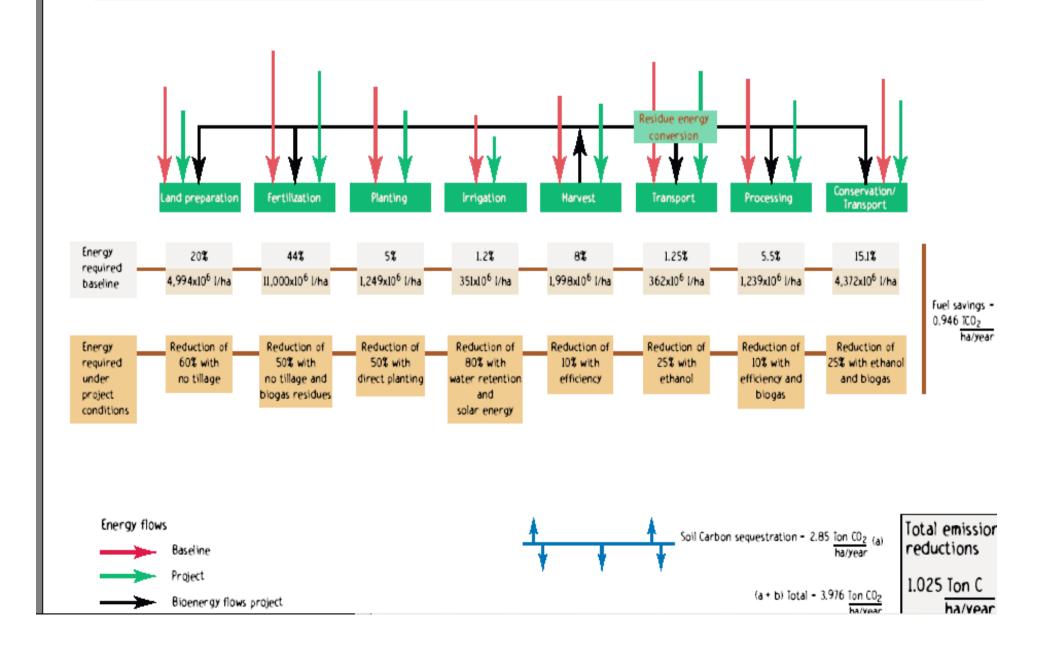
Some examples

	Agricultural activities to reduce GHG emissions
i	Improved manure management
	Reduced enteric fermentation
	Improved/reduced chemical agri-inputs use (fertilizers, pesticides, herbicides, etc.)
	Reduced machinery use (and/or lower fossil fuel intensity of conservation agriculture practices)
	Agronomic planning (selection of seeds and species with low chemical agri-inputs demand and water requirements)
	Energy from dedicated crops
	Energy from agricultural residues, animal waste, and other on-farm organic waste
	CA water management (water saving from improved water retention, reduced evaporation ecc.)
	Improved irrigation techniques/technologies (i.e. drip and sprayer irrigation)
	Improved water management in rice cultivation

Example: Conservation Agriculture: Carbon Reduction Potential

Reduced land preparation

Reduced agri-chemical inputs

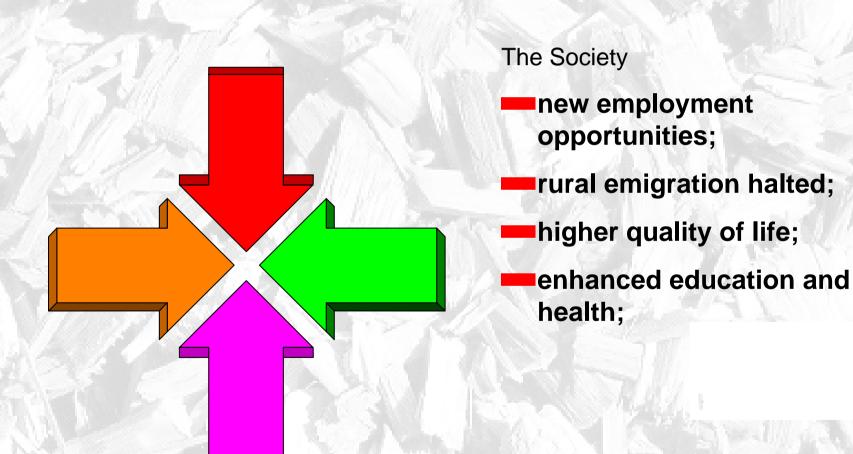

No-tillage practices & direct planting

Improved water retention

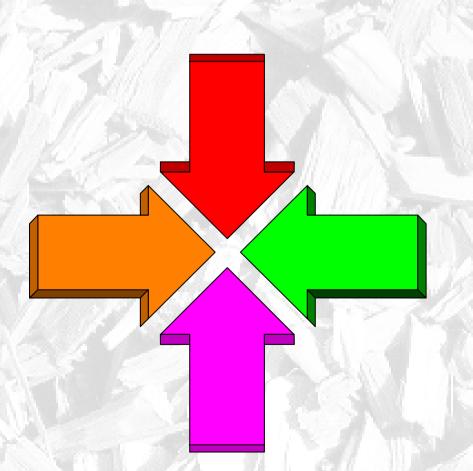
Decreased water, top soil & nutrient losses

All lead to HIGH Emissions Reductions

Energy and biomass flows: renewable energy and conservation agriculture An overall perspective

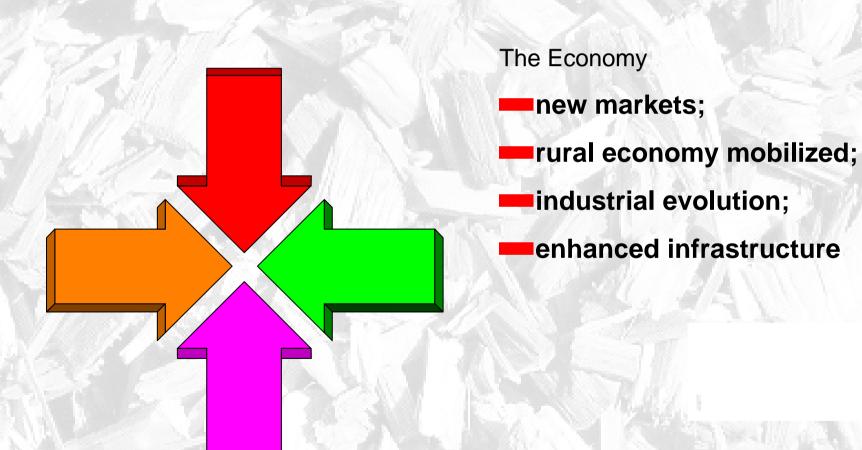

Bioenergy main Benefits

Promotes employment and rural infrastructure


Stimulates the double role of agriculture and forestry: energy users and energy producers

Reduces Carbon emissions

Bioenergy and agriculturepoints of convergence


Bioenergy and agriculture points of convergence

The Environment

- environment and carbon substitution: Kyoto Protocol;
- cleaner and more sustainable transport;
- cleaner and more sustainable industry;

CONSTRAINTS

Land use conflicts (food production, landscape)

Environmental impacts of large monocultural plantations

Low energy conversion efficiency

High costs due to market distorsion

Selected activities - 2002/4

- -Studies and data
 - → Wood energy in all regions
 - → Bioenergy potential assessment
 - → Bioenergy information system (decision making)
 - → Databases
 - → Links with climate change (mitigation and adaptation)
 - → CDM Methodologies for Agriculture

Selected activities - 2002/4

- Projects
 - → Energy strategies Niger, Mali
 - → Wood energy Mexico, Cuba, Slovenia
 - → GEF GHG/emission redtion. Asia, Brazil, Ethiopia
 - → Ethanol Nigeria; Biodiesel Ukraine
 - → Special Programme for Food Security

Selected activities - 2002/4

- Partnerships
 - →UN Energy
 - →IEA
 - → GEF
 - → UNFCCC and IPCC
 - → Universities SAU, IC, UU, UNAM
 - → Associations ISES, ANES, ITEBE

