## Bio-oil fuels production from microalgae after heterotrophic growth

(藻类异养转化制备生物油燃料技术)

Qingyu WU (吴庆余) Xiaoling Miao (缪晓玲)

Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, P.R.China

(清华大学生物科学与技术系)

### 1. Materials (实验材料)

❖ photoautotrophic *Chlorella protothecoides* 自养小球藻 (AC)

❖ heterotrophic *Chlorella protothecoides* 异养小球藻 (HC)

❖ Microcystis
微囊藻 (一种水华藻类)



Fig. 1 The shape of *Chlorella protothecoids* under light microscope ( $10{\times}40$ ). The diameter of cells is about 3-12  $\mu m$ .

(图1 小球藻细胞在光学显微镜下放大400倍图)



Fig. 2 Cells of Chlorella protothecoids under photoautotrophic and heterotrophic culture conditions.

(图2 自养和异养条件下的小球藻细胞)



Fig. 3 Cells of photoautotrophic *Chlorella protothecoids* (AC) and heterotrophic *Chlorella protothecoids* (HC) under confocal laser scanning microscope.

(图3 自养和异养小球藻细胞在激光共聚焦扫描显微镜下示意图)

Table 1
The contents of main chemical components in cells of AC and HC.

(表1 AC、HC细胞主要生化成分含量)

| Strain (%) | Protein (%) | Lipid (%) | Carbohydrate (%) | Ash (%) | Moisture<br>(%) | Others<br>(%) |
|------------|-------------|-----------|------------------|---------|-----------------|---------------|
| AC         | 52.64       | 14.57     | 10.62            | 7.38    | 8.74            | 6.05          |
| нс         | 10.28       | 54.70     | 15.19            | 7.24    | 5.40            | 7.19          |



Fig. 4 Cells of AC under differential interference microscopy.

(图4 微分干涉显微镜下的自养小球藻细胞)



Fig. 5 Cells of HC under differential interference microscopy.

(图5 微分干涉显微镜下的HC细胞,可见细胞内充满脂肪泡)



Fig. 6 *C. protothecoids* cells under light microscope (a) and electron microscope (b).

(图6 光学显微镜(a)和电镜下(b)小球藻细胞结构图)



#### Fig. 7 Differences in cell organization between HC and AC cells.

(图7 小球藻异养和自养转化细胞结构变化示意图)



Fig. 8 The culture process of the HC cells by "Two Step" method.

(图8 两步法半无菌的细胞培养流程示意图)



Fig. 8 The culture process of the HC cells by "Two Step" method.





Fig. 9 Comparison of the HC cell growth under axenic, half-axenic and no-axenic culture conditions.

(图9 异养小球藻在无菌、半无菌和开放条件下培养的生长情况比较。)

### 2. Fast pyrolysis of microalgae (藻类的快速热解)

Pyrolysis system: the fluid bed reactor (Fig. 7) (热解装置: 流化床快速热解(图7))

Pyrolysis conditions (热解条件):
Temperature (温度): 500℃
heating rate (升温速率): 600 ℃/s
vapor residence time (产物停留时间): 2-3 s
biomass-feeding rate (进料速度): 4g/min
particle size (样品颗粒大小) < 0.5 mm



#### Fig. 10 The diagram of fast pyrolysis system

(图10 快速热解装置示意图)



Fig. 11 Dry cells powder of AC, HC and *Microcystis* respectively.

(图11 自养(AC)、异养(HC)小球藻及微囊藻的干藻粉)

Table 2 Yields of fast pyrolysis at temperature of 500  $^{\circ}$ C, heating rate of 600  $^{\circ}$ C /s and the sweeping gas flow rate of 0.4m³/h.

(表2 微藻快速热解产率)

| Strain      | Gas  | Bio-Oil | Char |
|-------------|------|---------|------|
|             | (%)  | (%)     | (%)  |
| AC          | 29.6 | 16.6    | 53.8 |
| HC          | 31.6 | 57.2    | 11.2 |
| Microcystis | 55.2 | 23.7    | 21.1 |

All the yields were expressed on the basis of the dry weight of samples.



Fig. 12 Product yields of microalgae by fast pyrolysis at temperature of 500  $^{\circ}$ C, heating rate of 600  $^{\circ}$ C /s and the sweeping gas flow rate of 0.4m<sup>3</sup>/h.

(图12 微藻快速热解产物比率)



Fig. 13 Bio-Oil products of AC, HC and *Microcystis* by fast pyrolysis.

(图13 AC、HC 及微囊藻的快速热解油)

Table 3 Comparison of typical properties of fossil oil and fast pyrolysis oil of wood and HC.

|                                         | Typical value                 |                                           |                   |            |  |  |
|-----------------------------------------|-------------------------------|-------------------------------------------|-------------------|------------|--|--|
| Properties                              |                               | Fossil oil                                |                   |            |  |  |
|                                         | Wood                          | AC                                        | HC                | _          |  |  |
| C                                       | 56.4%                         | 62.07%                                    | 76.22%            | 83.0-87.0% |  |  |
| Н                                       | 6.2%                          | 8.76%                                     | 11.61%            | 10.0-14.0% |  |  |
| O                                       | 37.3%                         | 19.43%                                    | 11.24%            | 0.05-1.5%  |  |  |
| N                                       | 0.1%                          | 9.74%                                     | 0.93%             | 0.01-0.7%  |  |  |
| S                                       | n.d.                          | n.d.                                      | n.d.              | 0.05-5.0%  |  |  |
| Density (kg l <sup>-1</sup> )           | 1.2                           | 1.06                                      | 0.92              | 0.75-1.0   |  |  |
| Viscosity (Pa s)                        | 0.04-0.20<br>(at 40°C)        | 0.10<br>(at 40°C)                         | 0.02<br>(at 40°C) | 2-1000     |  |  |
| Heating value<br>(MJ kg <sup>-1</sup> ) | 21                            | 30                                        | 41                | 42         |  |  |
| Stability                               | Not as stable as fossil fuels | Not as stable as formore stable than wood |                   |            |  |  |

### **Conclusions**

Our research suggests that the new process, which combines bioengineering and fast pyrolysis, is a feasible and effective method for the production of high yield and high quality fuel oils from microalgae. The research could contribute to the creation of a system to produce energy from microalgae, and also could have great commercial potential for liquid fuel production.

[AC、HC和 *Microcystis*三种藻的生化组成不同,性质不一样,热解特性也不同。所得的热解油产率差别较大,油的性质也有所不同。异养使HC细胞内脂肪含量提高375% (Table 1),使其细胞的产烃能力增大,所得的油产率提高338% (是AC的3.4倍) (Table 2, Fig. 12)。通过热解条件的改进,有望进一步提高HC的产油率。]

# Thank you!