
SUGARCANE AS A PERFECT BIOMASS FOR ENERGY PRODUCTION

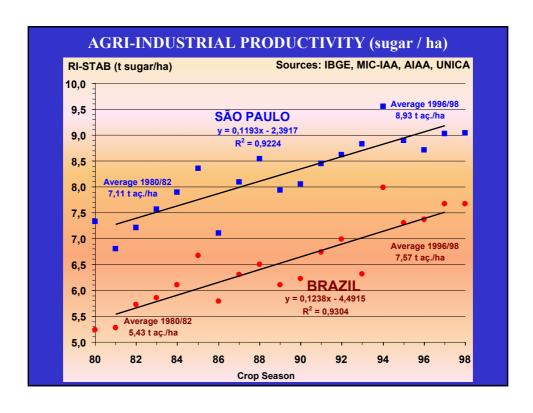
Luiz Carlos Corrêa Carvalho UNICA, Brazil

3rd LAMNET Workshop in Brazil December, 2002

SUGARCANE IS <u>PURE</u> ENERGY

BRAZILIAN'S SUGARCANE ENERGETIC VALUE: FOR 1 TON

PRODUCTION	ENERGY EQUIV. (MCAL) ⁽²⁾	TOE	
75 I (ethanol) ⁽¹⁾	500	0,046	
280 kg of bagasse (50% humidity)	630	0,058	
280 kg of straw (50% humidity)	630	0,060	
TOTAL	1.760	0,162	


(1) Better results: 85/90 I

2) Superior calorific power

Source: CTC/Copersucar, May 2002

Results:

- a) 1 ton of cane is equivalent to 1 barrel of oil
- b) 1 ha of cane (85 ton) is equivalent to 60 barrels of oil (net result)
- c) 5 mm ha represents 300.000.000 barrels of oil or 820.000 b/day (the actual oil consumption in Brasil is 1,5 mm b/day)

SUGARCANE AGRIBUSINESS POSSIBILITIES: LOWER PRODUCTION COSTS

- > NEXT FIVE YEARS: technology implementation (could reduce 20% the average production costs)
- > "CO-PRODUCTS": energy; ethanol from bagasse; use of trash for energy purposes; other possibilities (biodegradable plastic, etc)
- Medium Long Term Perspectives of Biotechnology
 - DHR
 - Fermentation Process
 - Others

Source: Carvalho, LCC

Alcohol & Sugar

Next Future Evolution

> With the DHR - Dedini's Rapid Hydrolysis (Alcohol from Bagasse) and the utilization of Tops, Leaves and Straws, the productivity will increase and the cost will decrease (Alcohol competitiveness with gasoline from U\$D 18 per barrel of oil). They are conducting it in an association with the CTC-COPERSUCAR.

In the Past Today DHR

4.620 7.740 12.740 (50% straw)

In november/02 it will begin a 5.000 l/day project in Dedini's mill.

	Aver	ages	Bes	t Values	
	(MJ/t	(MJ/t cane)		(MJ/t cane)	
Sugar Cane Production (total)	189.87		175,53		
- Agricultural Operations		30,10		30,10	
- Cane Transportation	34,		31,87		
- Fertilizers	66,	66.96		56.09	
- Lime, herbicides, etc	19,	19.06		19,06	
- Seeds	5,7	5.76		5.34	
- Equipment	33,	33,07		33,07	
Ethanol Production (total)**	46,	46,08		36,39	
- Electricity (bought)	0,00		0,00		
- Chemicals and Lubricants	7,3	7,34		7,34	
- Buildings	10,78		8,07		
Equipment	27,96		20,98		
External Energy Flows					
(agriculture + industry)***					
	Input	Output	Input	Output	
Agriculture	189,87		175,53		
ndustry	46,08		36,39		
Ethanol produced		1.996,37		2.045,27	
Bagasse surplus		175,14		328,54	
Total (external flows)	235,95	2.171,51	211,92	2.373,81	
Output/Input	9,2		11,2		

(**) Only "external energy: not including energy from bagasse utilized at the sugar mill, as steam or electricity.

(***) External energy inputs are mainly from fossil fuels (fuel oil, diesel); although in Brazil most of the electric power input is renewable (hydro-electric) it is considered here as component of buildings, equipment, chemicals, etc.

Source: Macedo, Isaias de Carvalho, Greenhouse Gas Emisisons and Bio-Ethanol Production / Utilization in Brazil, Jan/97, CTC - Copersucar

BRAZIL'S: SUGARCANE AGRIBUSINESS - THE CHANGE

3. SUGARCANE AS A SYSTEM, UPTAKING ${\rm CO_2}$ FROM ATMOSPHERE

	106 t C (equiv.)/year
Fossil fuel utilization in the agro-industry (inputs	+ 1.28
Methane emissions (sugar cane burning)	+ 0.06
N ₂ O emissions	+ 0.24
Ethanol substitution for gasoline	- 9.13
Bagasse substitution for fuel oil	
(food and chemical industry; includes sugar)	- 5.20
Net contribution (Carbon uptake)	- 12.74

ETHANOL COMPETITIVENESS IN C/S - BRAZIL (NO TAX)

ANHYDROUS SELL'S SCEN 1 SCEN 2 PRICE - US\$ / B 25,00⁽¹⁾ 40,00⁽²⁾

INTERNATIONAL GASOLINE

IN BRAZIL (CIF) 35,00⁽³⁾ 61,00⁽⁴⁾

- (1) PRODUCTION COST (AVERAGE) C/S REGION
- (2) ACTUAL MARKET PRICE PLUS CIDE
- (3) GASOLINE PRICE AT REFINARY
- (4) GASOLINE PRICE AT REFINARY PLUS CIDE

NOTES: -1 US\$ = 3 R\$

- ETAHNOL REDUCES THE GASOLINE PRICE

Souce: Carvalho, LCC

EXAMPLE

CONSUMPTION INCREASE OF AROUND 500 MILLION LITERS OF ETHANOL PER YEAR

100,000 new ethanol cars (CDM project Brazil - Germany)

or

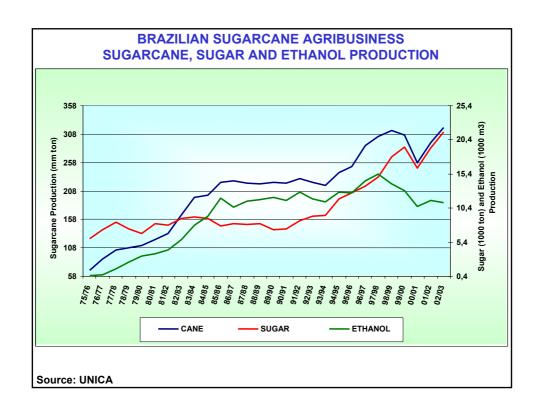
· Substitution of the use of MTBE

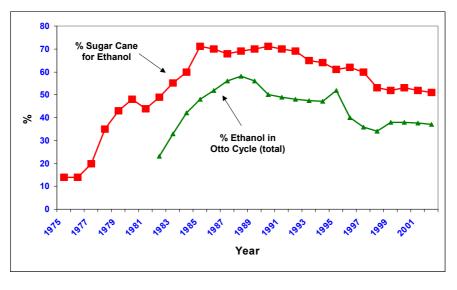
2 million cars in USA (10% ethanol) 4 million cars in EU (5% ethanol)

EMISSIONS REDUCTION

(MTBE - USA/EU) of around 1.000.000 ton/year CO_2

(Brazil - CDM project) of around * 700.000 ton/year CO2


* 25% of ethanol in the brazilian gasoline


EMISSION REDUCTION (Equivalent tons of CO₂ and CERs).

- 10 years proposed deadline for the project the total of reduced carbon in the project 100.000 new fleet alcohol fueled cars is of about
- 7.100.000 ton/ CO_2 (seven million and a hundred thousand tons of CO_2).

The unity average value of CO^2 ton = U\$ 5.90

Ethanol and Gasoline Utilization

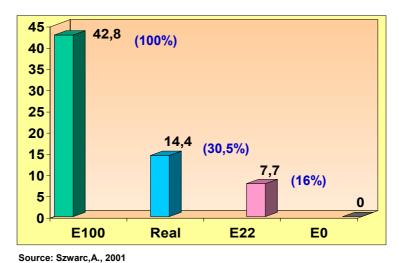
Source: Macedo, Isaias de C.

Employments

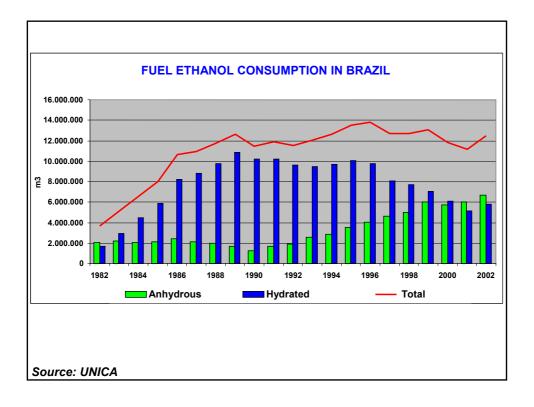
Employments in the production of the vehicle and of fuel men-year per thousand vehicles

MEN YEAR GENERATED	ALCOHOL VEHICLES	"C" GASOLINE VEHICLES	"A" GASOLINE VEHICLES
Vehicle Production	51,3	51,3	51,3
Fuel Production In 15 years of average life	1.482,0	369,9	18,8
Total Employments	1.533,36	421,2	70,1
Ratio of employments per type of vehicle	21,87 ⁽¹⁾	6,01	1 (2)

⁽¹⁾ Considering that an alcohol driven vehicle consumes, on average, 2.600 liters of hydrated alcohol per year, during average work life of 15 years, and that the production of one million liters of alcohol per year, generates 38 direct employments on average in Brazil.


Source: UNICA / ANFAVEA / Matriz Energética / Petrobrás, 2001

⁽²⁾ Considering that a gasoline driven vehicle spends 20% less fuel than a similar alcohol vehicle, and that the production of one million liters of gasoline per year generates 0.6 direct employments in the country. (Petrobrás had 41,173 employees in 1997, extracting 1 million barrels/day of petroleum and refining 1.45 million).


ENVIRONMENTAL RESULTS

AVOIDED CO₂ EMISSION SCENARIOS IN BRAZIL – 2000 (million metric tons of CO₂)

Spark Ignition Vehicle Fleet = 17,8 million (18,9% Etoh/81,1% Gasohol)

Year	Ethanol Fue (in millio	l Consump on liters/ ye		Gas oline Price	Ethanol Value	Considering Interest Tax	BALANCE AND	
	Anhydrous	Hydrous	Gasoline Equivalent	CIF Brazil US\$/bb	Consumed US\$ Million (Jan/01)	into the External Debt (PV - Jan/ 01)	ETHANOL	
1976	172		172	15,60	51,62	267,63		
1977	639		639	15,80	182,36	924,16		
1978	1.504	2	1.506	19,60	495,16	2.178,59		
1979	2.219	16	2.232	42,10	1.415,56	6.686,03		
1980	2.253	429	2.599	44,55	1.537,15	7.029,20		
1981	1.146	1.392	2.269	44,43	1.211,54	5.145,98		
1982	2.021	1.674	3.371	40,83	1.560,35	5.915,04		
1983	2.197	2.950	4.577	35,79	1.798,33	6.131,99		
1984	2.082	4.575	5.773	32,77	1.990,74	6.248,45		
1985	2.121	6.088	7.032	32,51	2.324,10	6.682,69		
1986	2.442	8.397	9.216	21,67	1.993,92	5.254,19	Note:	
1987	2.136	8.919	9.331	22,33	2.003,88	4.973,05	1) Real Value (US - CF	
1988	1.966	9.760	9.839	19,83	1.806,00	4.204,02	O) T	
1989	1.622	11.068	10.551	27,09	2.522,86	5.493,78	2) Two numbers repre	
1990	1.301	10.205	9.533	34,97	2.792,65	5.697,87	senting the exchange value saved with	
1991	1.647	10.251	9.916	30,35	2.417,17	4.624,50	ethanol use in Brazil;	
1992	1.899	9.631	9.668	27,16	2.048,06	3.689,55	It must be considered	
1993	2.548	9.404	10.135	24,12	1.851,45	3.176,49	the one that includes	
1994	2.850	9.665	10.647	22,10	1.736,43	2.816,96	the interest tax for	
1995	3.368	9.722	11.211	23,11	1.861,10	2.821,85	brazilian external debt	
1996	4.024	9.783	11.916	29,02	2.411,94	3.407,54		
1997	4.765	8.306	11.466	23,70	1.843,12	2.426,09		
1998	5.017	7.717	11.242	18,83	1.412,96	1.711,31		
1999	5.869	7.051	11.557	23,42	1.760,30	1.985,59		
2000	5.706	6.082	10.612	36,91	2.463,60	2.600,08		
Total	63.515	153.086	187.009		43.492,36	102.092,63	Source: DATAGRO	

BRAZIL AND RENEWABLES (SUGARCANE)

- a) ACTUAL AREA: 5 MILLION HA (1,5%)
- b) PRODUCTION (ENERGY EQUIVALENT): 300.000 b/day
- c) POTENTIAL AREA (10% OF THE TOTAL AGRICULTURAL BRAZILIAN AREA (TODAY IS 10% OF THE BRAZILIAN CULTIVATED AREA)): 33 MILLION HA (10%)
- d) POTENTIAL PRODUCTION: 2.000.000 b/day
 - → in a competitive way
 - → without improvements
 - → a lot of by-products
 - → sustainable developments

"Brazil is a country with a real possibility of self sufficiency in energy only thinking in renewables"

Prof. Rogerio Cerqueira Leite, 2002