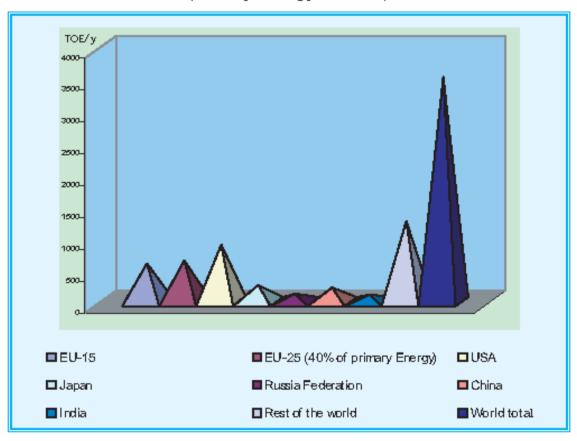
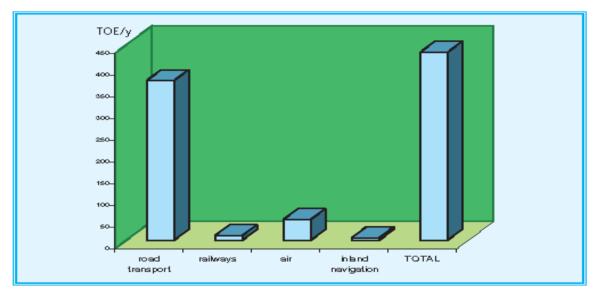
LATIN AMERICA THEMATIC NETWORK ON BIOENERGY LAMNET

BIOFUEL FOR TRANSPORT


G. Grassi

In the next 20 years the expected growth of the world economy will increase the demand of oil, in particular for transport (source Exxon) from ~85 million barrels/day to the huge value of ~ 330 million barrels/day (8 times the Saudi-Arabian capacity).

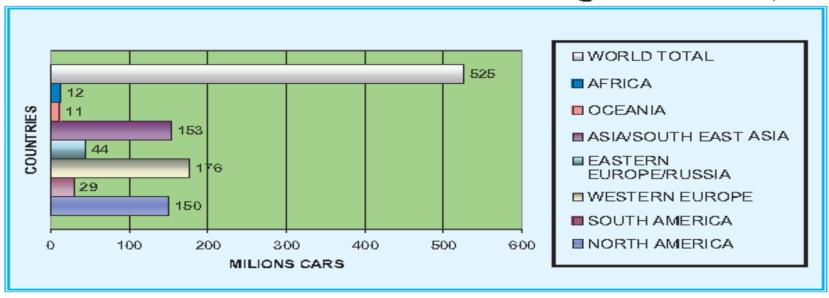
For the transport sector depending now for 100% on oil) a contribution to this immense energy supply volume will be provided by the **alternative liquid fuels** derived from natural gas (but with an energy loss for conversion of $\sim 45\%$ and thus significant decreasing CO_2 emissions) and at medium-long term from **biofuels** some of which (as can seen from the enclosed table) have the technical-economic potential to cover most of the medium term needs with a large impact on rural development (new jobs) and great benefits for the environment (zero CO_2 emissions, no SO_2 emissions for optimised closed bioenergy complexes).


TABLE I: World crude oil total gross consumption (year 2000) in MTOE/y

equal to 35 % of the total primary energy consumption = 9.978 billion TOE

TABLE II: EU-25 crude oil total gross consumption (year 2000) in MTOE/y

- The EU-25 oil import dependency is 76,5%;
- •83% of total oil consumption (535 MTOE/y) is used for energy;
- The non-energy consumption is 110 MTOE/y
- The oil consumption for transport in MTOE/y is as follows:


The present EU oil refining capacity is: ATM distillation: 668 MTOE/y Vacuum distillation: 256 MTOE/y Reforming: 90 MTOE/y Hydrocracking: 40 MTOE/y Catalytic craking: 108 MTOE/y Vis breaking & thermal crak: 81 MTOE/y TOTAL: 1,243 MTOE/y

Energy losses for transport products refining is: $\sim 10\%$ for gasoline and $\sim 20\%$ for diesel.

Evolution of world car park and transport fuel consumption

Road transport represents a challenging future task due to its high share of total transport volume fuel consumption and to the large expected increase in number of vehicles world-wide as shown in table III:

TABLE III: World car market (year 2000)

- 390 million cars in industrial Countries: urban population, 727 million
- 135 million cars in developing Countries:rural population, 2,166 billion
- Present world car market: ~ 55 million cars/year.
- World total number of cars (estimate for year 2020): 1.2
 billion

This huge increase (world-wide) of the number of cars will require a large increase of transport fuel consumption, from 2.1 to 3.4 billion TOE/y, as indicated in the following table.

TABLE IV: Evolution of world transport fuels consumption (MTOE/y) (source IEA / ISBN 92-64-01512-4)

	Year	2000	Year 2020		
	Gasoline	Diesei	Gasoline	Diese	
North-Central America	561	242	778	293	
South-America	30	34	56	56	
Brazi	24	3	50	61	
Europe + Russia	242	333	386	439	
Asla	186	253	397	469	
Asian Countries	30	60	63	111	
India	8	43	22	100	
Africa	30	34	65	65	
TOTAL world	1,111	1,002	1,817	1,594	

Biofuels could provide a significant contribution

EU taxation on transport fuels (year 2004):

• gasoline: 0,350 €/I (minimum) • diesel: 0,302 €/I (minimum)

• V.A.T.: 15% - 25%

Biofuels for transportation

TABLE V: Production targets of biofuels in the EU (EU Directive 2003/30/CE)

YEAR	Targets (not mandatory) in MTOE/y			
2000	~ O.9			
2005	~ 5 (2% of total)			
2010	~ 17 (5.75% of total)			
2020	~ 37 (new target under evaluation)			

The long-term world-wide technical estimated potential of biofuels for the transportation sector are indeed very large i.e. **7-10 billion TOE/y** (Table VI), but their penetration on the transportation fuel market will depend mostly of their competitiveness (in energy terms) in

comparison with conventional fuels (gasoline-diesel); their industrial cost in the EU is (in July 2004 for oil at 40 \$7bb();

with a structure of average supply final cost at refuelling station (before taxes) as follows:

```
0.20€/I (cost of oil)
0.05€/I (transport by ship)
0.09€/I (refining cost & loss of fuel)
0.07€/I (delivery by truck to refuelling St.)
0.41€/I (~ 540€/TOE)
(1 bbl=159 I)
```

BIOFUEL YIELDS (TOE/ha):

Bioethanol (average productivity):

♦Sugar cane-sweet sorghum: 3.0/4.2

♦Sugar-beets: 3.5/4.5

♦Corn: 1.5/2

♦Wheat: 1.2

♦Potatoes: 1.8

♦Lignocellulosic crops: 3/5

Biodiesel:

♦Rape/sunflower: 1.2

♦Palm oil: 2 - 5

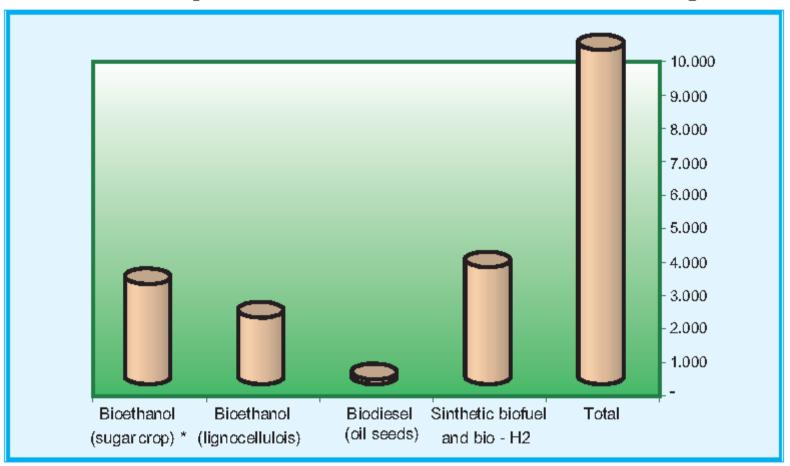
Biomethanol from energy crops:

♦S.R.F.: 2.4

♦Herbaceous crops: 4.5

Dimethyleter: 1.8 - 3.7

Bio - Hydrogen: 2.4 ± 4


Among the different existing biofuels, **bioethanol appears to be the most promising** in short, medium and long term for the following reasons:

- 1. It is a refined high quality energy carrier with specific energy content ~ 70% of gasoline.
- 2. It can be utilized as blending component of gasoline (or diesel fuel in small amounts: 3%) or for gasoline reformulation (ETBE) acceptable in conventional vehicles as well as in the new **Flexible-Fuel-Vehicles** (FFV) able to run on any mixture of gasoline and ethanol. These FFV constitute a breakthrough in the transition towards dedicated ethanol-fuelled vehicles (under development but not yet commercial) that once optimised should present an efficiency increase of 7% in comparison with gasoline vehicles (6% if biomethanol is used).

CHARACTERISTICS OF BIOFUELS:

	Diesel engines			Otto engines					
	Diese	Bio-diese	DME	F-T dlese	Gasoline	Ethanol	ETBE	Methanol	MTBE
Chemical formula	C ₁₂ H ₆	Methyl ester	CH₃O- CH₃	Paraf- fins	C ₈ H ₁₅	C₂H₅ OH	C₄H ₈ - OC₂H ₅	СН₃ОН	C ₄ H ₈ - OCH ₃
Cetane number	50	54	55-60	> 74	8	11	-	5	-
Octane number (MON)	-	-	-	-	86	92	105	92	100
Density (kg/l)	0.84	0.88	0.67	0.78	0.75	0.80	0.74	0.79	0.74
LHV (MJ/kg @ 15∞Q	42.7	37.3	28.4	44.0	41.3	26.4	36.0	19.8	35.2
Stoich. air / fuel ratio (kg/kg)	14.5	12.3	9.0	-	14.7	9.0	-	6.5	-
Oxygen content (wt-%)	0-0.6	9.2-11.0	-	~0	-	-	-	-	-
Kinematic viscosity (mm²/s)	4	7-4	-	3.6	-	-	-	-	-
Flash point (∞C)	77	91-135	-	72	-	-	-	-	-
Boiling temperature	-	_	_	-	30-190	78	72	65	55

TABLE VI: Biofuels long-term (2050-2100) world potential estimations (MTOE/y)

The FAO estimations of worldwide surplus land suitable for sugar-cane is ~ 1 billion ha.

ECONOMICS (estimation) €/TOE:

Bioethanol from:	NOW	LONG TERM		
◆Sugar-cane	220 (Brazil)	200		
◆Sugar-beets	750 (EU)			
♦Wheat	700 (EU)			
 Corn	570 (USA)	500		
◆Sweet-sorghum	350 (EU)	200-250		
Biodiesel: Biomethanol: Dimethylether: F-T Diesel: Bio-H ₂ :	800 (rape seeds) 480 ~ 600 ~ 700 550-1,000	600-300 300 400 400 500		

(For comparison the average industrial cost of gasoline-diesel fuel in the EU is ~ 400 €/TOE with oil at 40 \$/bbl)

Among several biofuels, bioethanol appears to be the most promising.

Flexible Fuel Car