Biogas from coffee waste

Two case studies

Universidade do Minho, Departamento de Engenharia Biológica

Problem

Good Food, Good Life

- about 40 ton/day of coffee waste (solid content between 13 e 22%) – from coffee substitutes production
- · Inicially disposed on land

Other available wastes

 The factory has a WWTP producing 3.9 ton/day of sewage sludge (22%TS)

Case Study I

Co-digestion of coffee waste with sewage sludge

Lúcia Neves, Rosário Oliveira e Madalena Alves

Universidade do Minho, Departamento de Engenharia Biológica

Batch assays of co-digestion of coffee waste and sewage sludge

Experimental Conditions:

- ≈7g TS coffee waste/gTS sewage sludge relative proportion of waste production
- 2.3 g TS waste (Coffee waste+sewage sludge)/g TS inoculum
- 6 to 9 % Total solids (TS) from the waste in the reactors

Results

assay#	Methane Production (m³ CH _{4 (STP)} / kg VS _{initial})	(%) methanation	TS reduction (%)	VS reduction (%)
Eko	0.24	76	73	78
Ricoré	0.28	85	67	80
Pensal	0.02	10	31	40
Mokambo	0.25	75	50	79
Tofina	0.25	89	54	75

Conclusions

- TS reduction in the range 50-73%
- VS reduction in the range 75-80%
- Low values of hydrolysis constants... between 0.035-0.063 d-1
- However hydrolysis was not the rate limiting step
- Barley waste only achieved 10% of the maximum methane potential and TS and VS reduction of 31 e 40%, respectively.

Universidade do Minho, Departamento de Engenharia Biológica

Case Study II

Enhancement of methane production from a barley waste

Lúcia Neves, Raquel Ribeiro, Rosário Oliveira e Madalena Alves

Two strategies

I) alcaline pré-hydroysis of the barley waste before the co-digestion with sewage sludge

II)Co-digestion of the barley waste with kitchen waste

Universidade do Minho, Departamento de Engenharia Biológica

I – Alcaline pre-hydrolysis (preliminary study)

- 0.3g NaOH/gTS , 24 hours, at 25° C.
- Followed by co-digestion with sewage sludge as previously defined.

 $\begin{array}{l} 7gST_{coffee\ wastel}/gST_{sewage\ sludge} \\ 2.3gTS_{substrate}/gST_{inoculum} \end{array}$

II - Co-digestion of coffee waste with kitchen waste

Digester I 60% of kitchen waste +40% of barley waste

Digester II 100% of kitchen waste

TS in both digesters: 22%

Results

#	Methane production	methanatio n	TS reduction	VS
	(LCH _{4(STP)} /kg SV _{initial})	(%)	(%)	Redu ction (%)
I	363	92	61	67
II	432	83	75	80

Universidade do Minho, Departamento de Engenharia Biológica

Conclusions

- The pre-treatment process should be optimized, but the preliminary results confirm its potential to enhance the biodegradability of the barley waste
- The addition of the barley waste to an existing AD plant working with organic or kitchen waste is feasible

Universidade do Minho, Departamento de Engenharia Biológica

. .