

Bio-coal from Groundnut Shells -An Example for Sustainable Bio-energy Use

Bio-coal from Groundnut Shells -An Example for Sustainable Bio-energy Use Factor 4 Energy Projects GmbH Slide 1/32

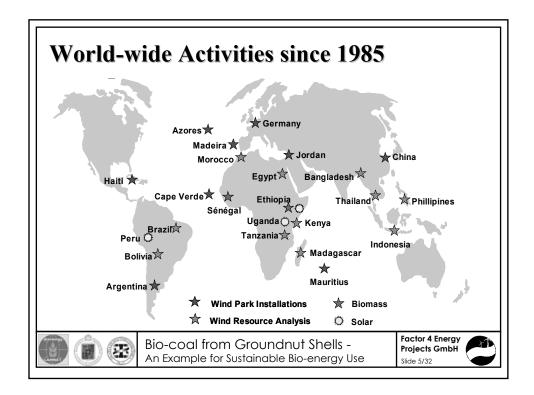
Factor 4 Energy Project GmbH Hinter dem Chor 8 23 966 Wismar Fon ++49 – 3841 – 404 20

Fon ++49 - 3841 - 404 20 Fax ++49 - 3841 - 404 22 **Germany** Dipl.-Ing. Benjamin Jargstorf Glamis 3404 Las Condes Casilla 73-34 El Golf **Santiago de Chile** ++56 – 2 – 4927 464 <u>benjamin@factor-4.com</u>

Contents

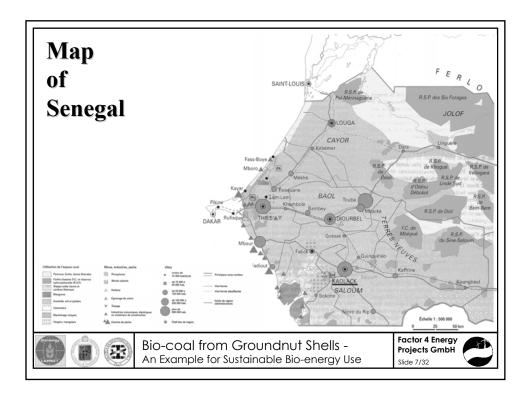
- Introduction
- ◆ Project Background
- ◆ Energy Master Plan for Kaolack
- ◆ Energy Flow Diagram
- ◆ Processing Ground Nuts at NOVASEN Factory
- ◆ Energy Balance of NOVASEN
- ◆ Project Design
- ◆ Current State
- **♦** Summary

Bio-coal from Groundnut Shells -An Example for Sustainable Bio-energy Use Factor 4 Energy Projects GmbH Slide 3/32


Introduction

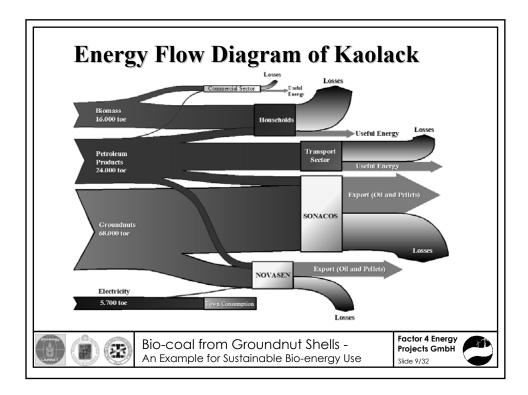
- ◆ Factor 4 Energy Projects GmbH, Wismar (Germany)
 - ▶ small consulting firm specialized in renewable energies (RE)
 - wind energy, biomass/household energy, solar energy
 - training in the Field of RE
 - ▶ energy Master Plans
- ◆ Current Projects
 - ▶ capacity building for wind energy engineers (P.R. of China)
 - ▶ planning of a 50 MW Wind Park (Ethiopia)
 - ▶ installation of wind parks in parallel with Island Grids a total of 21 wind turbines 300 kW each (Azores, Portugal)
 - ▶ wind energy utilization in CARICOM countries (Jamaica)
 - dissemination of fuel-saving cook stoves (Ethiopia)
 - ▶ energy from household waste (Jamaica)

Bio-coal from Groundnut Shells -An Example for Sustainable Bio-energy Use Factor 4 Energy Projects GmbH Slide 4/32



Household Energy Project Senegal

- ◆ carried out by Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH, since 1997
- a combination of an energy (household energy) and forestry project (community forest)
- one project component: energy master plan of a regional province capital
- ◆ Kaolack, centre of groundnut production and processing in Senegal
- the energy master plan aimed at identifying suitable areas for large-scale intervention in the field of energy


Major Results of Energy Master Plan

- ◆ an average per capita consumption of 230 kgoe
- ◆ roughly 1/3 household energy for cooking
- ◆ fossil fuels nearly 50 % practically exclusively for transport and electricity
- ◆ kerosene and LPG with 6 % (increasing)

Fossil Fuels	107 kgoe	47 %
Household Energy	67 kgoe	29 %
Kersosene, LPG	14 kgoe	6 %
Commercial Energy	8 kgoe	3 %
Others and Losses	34 kgoe	15 %

Summary of Master Plan

- ◆ largest energy input to Kaolack through agricultural residues (ground nuts – a total of 68,000 toe per year)
- largest amount of losses in ground nut processing, followed by household sector
- ◆ commercial energy sector insignificant
- ◆ two industrial groundnut processing plants (mills)
 - government owned SONACOS
 - ▶ private owned NOVASEN
- ◆ very difficult to cut down on losses at household level
- technical possible to reduce losses in the ground nut processing plants

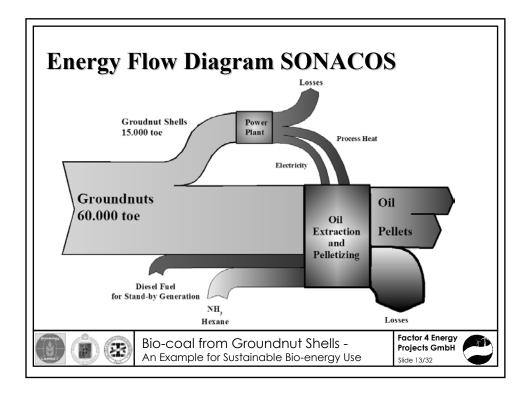
Comparison SONACOS – NOVASEN 1

	SONACOS	NOVASEN			
Property	Government	Private			
Employees	600 + 500 temporary workers	90 + 250 temporary workers			
Annual Capacity	130.000 t	40.000 t			
Annual Production	46.000 t Groundnut Oil	60.000 t Groundnut Oil			
	50.000 t Pellets	60.000 t Pellets			
Energy Input	15.000 MWh	4.400 MWh			
	from Combustion of Groundnut Shells	Diesel Generator (heavy fuel)			
Specific Energy	210 kWh per ton of Oil	37 kWh per ton of Oil			
Consumption	80 kWh per ton of Pellets	37 kWh per ton of Pellets			
Grid Connection	none	yes, illumination only			
SENELEC					
Stand-by Generator	2 x 600, 1 x 1.200 MW	no, only 1 MW main electric			
		generator			
Residues of Production	none	30.000 tons Groundnut Shells			
theoretical Biocoal	33.000 t per year	10.000 tons per year			
Potential					
technical Biocoal		10.000 tons per year			
Potential					

Bio-coal from Groundnut Shells -An Example for Sustainable Bio-energy Use Factor 4 Energy Projects GmbH Slide 11/32

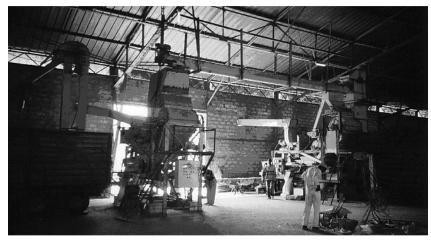
Comparison SONACOS – NOVASEN 2

- ◆ SONACOS factory
 - ▶ not flexible, government structures
 - ▶ not interested in energy efficiency
 - ▶ low efficiency boilers for ground nut shell combustion
 - ▶ two stage oil extraction: mechanical (80 %), chemical using Hexane (10 %)


♦ NOVASEN

- ▶ private company, using modern equipment
- ▶ highly efficient oil extraction without chemicals (conditioners = rotary hearth furnaces), extraction efficiency 92 %
- ▶ no uses for groundnut shells dumped, or sold to SONACOS

Bio-coal from Groundnut Shells -An Example for Sustainable Bio-energy Use Factor 4 Energy Projects GmbH Slide 12/32


Proposed Intervention

- ◆ installation of a pyrolysis plant at NOVASEN, intending to generate
 - ▶ bio-coal from groundnut shells
 - ▶ flue gasses for the running of NOVASEN diesel generator
 - pyrolysis oil for generation of process heat
- proposed project structure
 - private-public partnership with a charcoal (grill-coal) producer from Europe
- expected result
 - ▶ considerable amount of biocoal produced from groundnut shells
 - increased efficiency in the NOVASEN factory
 - ▶ reduction of fossil fuel consumption

Bio-coal from Groundnut Shells -An Example for Sustainable Bio-energy Use Factor 4 Energy Projects GmbH Slide 14/32

Shelling Plants (90 tons/day)

Bio-coal from Groundnut Shells -An Example for Sustainable Bio-energy Use Factor 4 Energy Projects GmbH Slide 15/32

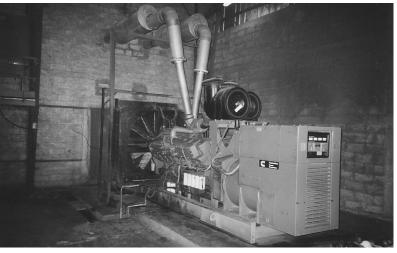
Storing Groundnut Shells

Bio-coal from Groundnut Shells -An Example for Sustainable Bio-energy Use Factor 4 Energy Projects GmbH Slide 16/32

NOVASEN Rotary Hearth Furnaces

Bio-coal from Groundnut Shells -An Example for Sustainable Bio-energy Use Factor 4 Energy Projects GmbH Slide 17/32

Screw Press of "Mechanique Moderne"

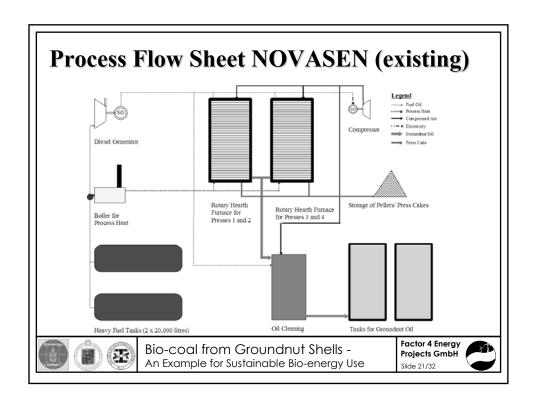


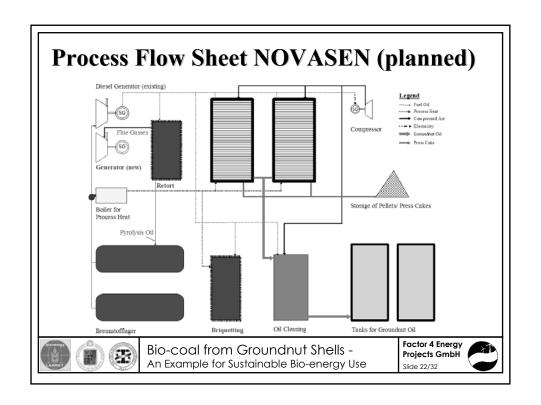
Bio-coal from Groundnut Shells -An Example for Sustainable Bio-energy Use Factor 4 Energy Projects GmbH Slide 18/32

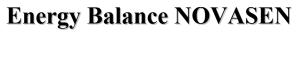
Diesel Generator 1.25 MVA (1 MW)



Bio-coal from Groundnut Shells -An Example for Sustainable Bio-energy Use Factor 4 Energy Projects GmbH Slide 19/32


Heavy Fuel Boiler for Process Heat




Bio-coal from Groundnut Shells -An Example for Sustainable Bio-energy Use Factor 4 Energy Projects GmbH Slide 20/32

1 1

Input	in t	in toe	Output	in t	in toe	utilized
Groundnuts	30,000	12,000	Groundnut Oi	12,000	4,800	4,800
			Press Cake	18,000	7,200	720
Groundnut Shells	10,000	4,000	Bio-Coal	2,400	1,656	1,656
			Pyrolysis Oil	2,140 —	449	
			Flue Gasses	2,320 -	302	
Heavy Fuel	920					
Pyrolysis Oil	-449	471 ◀			HI	
Electricity SENELEC	C 500 MWh	150				
from Flue Gasses		-302 ◀			1	
Total		16.319	Total		14 407	7.176

Overall Energy Efficiency 44 %

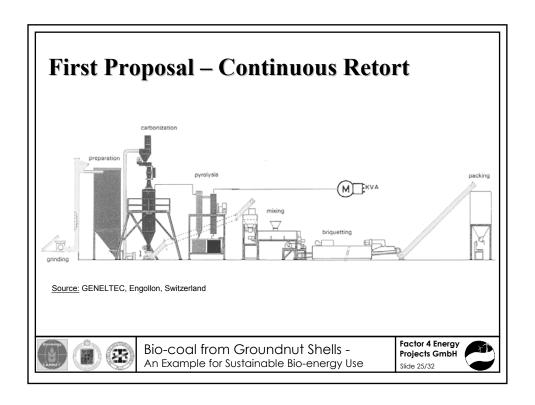
Note: only 10 % of press cake pelletized (lack of market for fodder in Senegal, lack of pelletizing capacity)

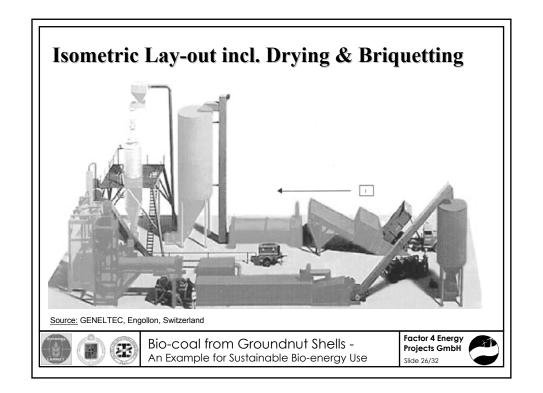
Bio-coal from Groundnut Shells -An Example for Sustainable Bio-energy Use Factor 4 Energy Projects GmbH Slide 23/32

Energy Balance NOVASEN max.

Input	in t	in toe	Output	in t	in toe	utilized
Groundnuts	30,000	12,000	Groundnut Oi Press Cake	12,000 18,000	4,800 7,200	4,800 720
Groundnut Shells	10,000	4,000	Bio-Coal Pyrolysis Oil Flue Gasses	4,320 4,100 — 4,200 —	2,981 820 546	2,981
Heavy Fuel Pyrolysis Oil	920 -820	100 ◀			\sqcup	
Electricity SENELEC from Flue Gasses	500 MWh	150 -546 ←				
Total		15.704	Total		16.347	8.501

Total 15,704 Total 16,347 8,501


Overall Energy Efficiency 54% (additional pyrolisis of press cake)


Note: only 10 % of press cake pelletized (lack of market for fodder in Senegal, lack of pelletizing capacity)

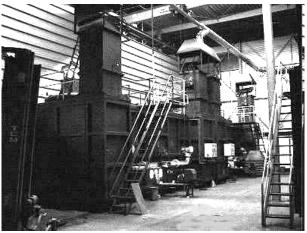
Bio-coal from Groundnut Shells -An Example for Sustainable Bio-energy Use Factor 4 Energy Projects GmbH Slide 24/32

. .

Signed Proposal

- Dutch company Carbo Group B.V. (Amelo, NL) is a major producer of pellets and bio-coal (<u>info@carbo.nl</u>, <u>www.carbo.nl</u>)
- contacted DGIS (Directoraat-Generaal Internationale Samenwerking) General Directorate for International Cooperation, part of the Dutch Foreign Ministry
- ◆ worked out a PPP proposal together with NOVASEN
- ◆ up to 60 % of investment cost can come from DGIS
- ◆ estimated investment ~ 1.5 mill. EUR for complete plant
- ◆ estimated output ~ 4.000 tons bio-coal (= 1 % of Senegal's current consumption)

Bio-coal from Groundnut Shells -An Example for Sustainable Bio-energy Use Factor 4 Energy Projects GmbH Slide 27/32


Technology

- two retorts work in combination
- batch process
- for starting, external heating of first retort (fuel)
- then, flue gasses are directed to the second and incinerated
- the process is repeated
- ◆ for NOVASEN two sets (4 retorts) are planned

Bio-coal from Groundnut Shells -An Example for Sustainable Bio-energy Use Factor 4 Energy Projects GmbH Slide 28/32

Carbonizer CG 2000 Plant (2 retorts)

Bio-coal from Groundnut Shells -An Example for Sustainable Bio-energy Use Factor 4 Energy Projects GmbH Slide 29/32

Carbonizer CG 2000 Plant (2 retorts)

Bio-coal from Groundnut Shells -An Example for Sustainable Bio-energy Use Factor 4 Energy Projects GmbH Slide 30/32

Summary

- trough using the otherwise wasted groundnut shells, the modern groundnut processing plant NOVASEN can achieve fuel autonomy
- and, additionally, produce approx. 4,000 tons of bio-coal per year
- ◆ of 14,000 tons charcoal consumption in Kaolack, ~ 28 % can be generated from groundnut shells
- ♦ with ~ 1 mio. tons of groundnut production/a, Senegal has a potential of ~ 100,000 tons of groundnut shell coal
- other residues, such as biological municipal waste or typha (at the Senegal river) offer additional raw material

Bio-coal from Groundnut Shells -An Example for Sustainable Bio-energy Use Factor 4 Energy Projects GmbH Slide 31/32

Outlook

- through using pyrolysis instead of simple combustion, the overall energy efficiency of a groundnut processing plant can be increased dramatically
- ♦ in addition, pressures from the scarce forest resources in Senegal can be taken
- this supply-side intervention is much more effective than demand-side measures (such as energy-saving stoves)
- ◆ advantages:
 - ▶ the biomass is collected anyway, no additional transport costs
 - ▶ industrial process guarantees high efficiency (retorts ~ 40 % coal, traditional kilns only ~ 10 ... 15 %)
 - ▶ in using the pyrolysis by-products, the economy of carbonization is improved tremendously

Bio-coal from Groundnut Shells -An Example for Sustainable Bio-energy Use Factor 4 Energy Projects GmbH Slide 32/32

