

Department of Energy Engineering



#### Latin America Thematic Network on Bioenergy International WorkShop "Bioenergy for a Sustainable Development"

8-10 November - Viňa del Mar, Cile

#### BIOMASS FED MICRO-GAS TURBINE PLANT FOR DECENTRALISED ENERGY GENERATION IN TUSCANY

Francesco Martelli, David Chiaramonti, Giovanni Riccio

Department of Energy Engineering "Sergio Stecco" University of Florence, Florence, Italy

Biomass fed micro-gas turbine for decentr. energy generation in Tuscany

Internaional WorkShon "Bioenergy for a Sustainable Development"



University of Florence

Department of Energy Engineering



## **Outlook**

- ❖ Scope of the work
- ❖ Introduction to biomass in Tuscany
- ❖ The externally fired gas turbine
- Expected performances
- ❖ Economic analysis
- Conclusions
- ❖ Future work

Biomass fed micro-gas turbine for decentr. energy generation in Tuscan



Department of Energy Engineering



## Scope of the work (1)

**Evaluate the economic feasibility of an Externally Fired Gas Turbine** 

√ Bio Micro GT (also called Dual Combustion Gas Turbine DCGT: solid biomass-natural gas)

as a mean for decentralised Heat and Power production in Tuscany

Biomass fed micro-gas turbine for decentr. energy generation in Tuscany

Internaional WorkShop "Bioenergy for a Sustainable Development"



University of Florence

Department of Energy Engineering



## Scope of the work (2)

The work is divided into several different steps

- √ Evaluation of biomass potential in Tuscany
- ✓ Definition of MicroGT configuration
- ✓ Selection and comparison of different mix of fuels (Dual Combustion with NG or bioethanol, 100 % solid biomass)
- √ Economic evaluation

Biomass fed micro-gas turbine for decentr. energy generation in Tuscany



Department of Energy Engineering



# How the work has been carried out LIFE - BIOSIT

Biomass in Tuscany: a GIS model

- · A wide potential exist in the region
- In order to develop bioenergy project → need to assess biomass availability and proper sites for bioenergy generation:
  - Technically
  - Economically
  - Socially
- GIS (Geographic Information Systems)
  - Essential supporting tool
  - Implementation of ad hoc algorithms
- The GIS analysis identified biomass types and amounts, as well as sites suitable for bioenergy plants

Biomass fed micro-gas turbine for decentr. energy generation in Tuscan









Department of Energy Engineering



## Small scale bioenergy systems

- Some advantages:
  - Easier CHP
  - Lower impact on the territory
  - Logistic
- Disadvantages
  - Higher specific cost
  - Lower efficiencies
  - Lower reliability/availability (power)
- → There's a niche (but significant) market for small scale and reliable bioenergy systems

Biomass fed micro-gas turbine for decentr. energy generation in Tuscany







Department of Energy Engineering



## **Bio Micro GT – Expected performances**

| PERFORMANCE           | MICRO_GT       | BIO_MGT |   |
|-----------------------|----------------|---------|---|
| PARAMETER             |                |         |   |
| NET ELECTRIC POWER    | <b>(</b> 103   | 92      | _ |
| (KW)                  |                | $\leq$  |   |
| EFFICIENCY            | <b>31,0</b>    | 22,1    | - |
| NATURAL GAS FLOW RATE | 0,007          | 0,004   |   |
| (KG/S)                |                |         |   |
| AIR/GAS FUEL RATIO    | 121,3          | 192,8   |   |
| BIOMASS FLOW RATE     | -              | 0,020   |   |
| (KG/S)                |                |         |   |
| AIR INDEX FOR BIOMASS | -              | 8,0     |   |
| AVAILABLE             |                |         |   |
| ENERGY BIOMASS        | - (            | 51%     |   |
| CONTRIBUTION          |                | $\geq$  |   |
| EXHAUST HEAT RECOVERY | <b>(</b> 141,5 | 174     | _ |
| UP TO 373 K (KW)      |                |         |   |
| OUTLET EXHAUST        | 549            | 585     |   |
| TEMPERATURE (K)       |                |         |   |

#### Bio\_MGT

- •Net electric power reduced from 103 kW to 94 kW (~ -5,8%) •Decrease in the electric efficiency, from 31% to ~ 22%, but still very interesting for small scale bioenergy system
- •Biomass contribution in terms of primary energy > than 50%
  •Available heat increases from 141,5 kW<sub>th</sub> to 174 kW<sub>th</sub> (+23%) → possibility for small CHP

Biomass fed micro-gas turbine for decentr. energy generation in Tuscany



Department of Energy Engineering



## **Economic analysis**

· Capital costs:

| COMPONENT       | COST    |   |
|-----------------|---------|---|
| MICRO GAS       | 132,000 | € |
| TURBINE         |         |   |
| BIOMASS BURNER  | 7,565   | € |
| HEAT EXCHANGER  | 40,000  | € |
| CYCLONES AND    | 3,000   | € |
| FILTERS         | -       |   |
| STORAGE OF FUEL | 4,000   | € |
| OTHER           | 3,000   | € |
| COMPONENTS      |         |   |
| TOTAL           | 189,565 | € |

O&M costs per year: 6.9 % of total investment costs

· Fuel costs:

67.5 €/t<sub>DM</sub> (wood chips – 45 €/t at 40 % moisture

content)

110 €/ t<sub>DM</sub> (wood pellets) 22.33 ¢€/Nm3 (natural gas) 0.5 €/It (bioethanol)

Biomass fed micro-gas turbine for decentr. energy generation in Tuscany

Internaional .WorkShop "Bioenergy for a Sustainable Development" 13



University of Florence

Department of Energy Engineering



## **Economic analysis**

· Products:

4 ¢€/kWh<sub>e</sub> (Electricity)

8.41 ¢€/kWh<sub>e</sub> (Green Certificate)

6.5 ¢€/ kWh<sub>th</sub> (Heat – Range: 6-9 ¢€/ kWh<sub>th</sub>)

· Green Certificates (first 8 years only):

- Applied to all the electric production only if 100 % biomass system.
- Otherwise, applied to 50 % of the renewable energy share (co-firing)

Other assumptions:

| DISC,RATE (ON    | 4 %    |
|------------------|--------|
| EQUITY)          |        |
| EQUIPMENT        | 12     |
| LIFETIME         |        |
| OPERATING HOURS  | 6,500  |
| PER YEAR         |        |
| LOAN (%)         | 60 %   |
| LOAN TERM IN     | 8      |
| YEAR             |        |
| INTEREST ON LOAN | 5,0 %  |
| EQUITY           | 40-0 % |
| GRANT (SUPPORT)  | 0-40 % |

 ${\it Biomass fed micro-gas turbine for decentr.\ energy\ generation\ in\ Tuscany}$ 



Department of Energy Engineering



#### **Results – Dual Combustion NPV & PBP**

51 % biomass, 49 % NG

51 % biomass, 49 % NG





REMARK - As expected, results are more dependent on the amount of heat sold rather than on the grant → income from heat selling is essential for economic viability

Consequence: the success of the bioenergy project depends on its ability to meet existing heat demand, rather than only on public supporting measures

nass fed micro-gas turbine for decentr. energy generation in Tuscany

Internaional .WorkShop "Bioenergy for a Sustainable Development"



University of Florence

Department of Energy Engineering



## **Results – Dual Combustion** Sensitivity on kWh<sub>th</sub> selling price

51 % biomass, 49 % NG

51 % biomass, 49 % NG





Assumption: 0 % grant, 40 % equity (Energy: 4 ¢€/kWh<sub>s</sub>; Green Cert. 8.41 ¢€/kWh<sub>s</sub>; Heat 6.5 ¢€/ kWh<sub>s</sub>)

Result - Project becomes attractive if > 80 % of heat is sold (reasonable PBP time and heat selling price)

Biomass fed micro-gas turbine for decentr. energy generation in Tuscany



Department of Energy Engineering



# Results – Bio MicroGT

#### Preliminary simul. on 100 % solid biomass

100 % solid biomass



100 % solid biomass



Assumption: 900 °C TIT. (Energy: 4 ¢€/kWh<sub>e</sub>; Green Cert. 8.41 ¢€/kWh<sub>e</sub>; Heat 6.5 ¢€/ kWh<sub>th</sub>)

<u>Results</u> are quite promising, even with low amount of heat placed on the market. Detailed investigation and simulation is worth to be carried out.

Biomass fed micro-gas turbine for decentr. energy generation in Tuscany

Internaional . WorkShop "Bioenergy for a Sustainable Development" 17



University of Florence

Department of Energy Engineering



#### Results

# 100 % biomass, combination of wood chips and bio-ethanol

#### Assumption:

- ✓ Hydrated bio-ethanol (92 % v/v) @ 40-55 ¢€/lt (as available in Tuscany)
- ✓ Bio-ethanol as substitute of NG in the Dual Combustion mode (49 % of energy input)

Results are very negative, even assuming 100 % heat sold and 9 ¢€/ kWh<sub>th</sub>

This is due to the high cost of bio-ethanol compared to NG (2.3  $\not\in$ /MJ compared to 0.63  $\not\in$ /MJ of natural gas and 0.6-0.4  $\not\in$ /MJ of solid biomass-chips), which makes the existing incentives – Green Certificates scheme – insufficient for economic viability.

Biomass fed micro-gas turbine for decentr. energy generation in Tuscany



Department of Energy Engineering



#### Conclusions (1)

- ✓ Significant potential exists for small scale biomass-based CHP (GIS)
- ✓ Preliminarily examined an externally fired micro gas turbine system (~100 kWe) fed with solid biomass (~ 51 % of energy input) and NG
- √Thermodynamic and performance parameters evaluated. Overall electr. efficiency of 22,1 % obtained keeping 1053 K as  $T_{max}$  at H.E. inlet
- ✓ Economic analysis carried out. NPV and PBP calculated. Impact of grant simulated in the range 0-40 %, as well as kWh<sub>th</sub> selling price.

Biomass fed micro-gas turbine for decentr. energy generation in Tuscany

International WorkShon "Rigenergy for a Sustainable Development" 1



University of Florence

Department of Energy Engineering



### Conclusions (2)

- ✓ Amount and selling price of heat sold more important than grant
- ✓ Low quality (hydrated) bio-ethanol considered as substitute of Natural Gas: economics are unfavourable
- √100 % externally fired biomass micro gas turbine (no direct combustion of natural gas) preliminary considered. Promising results.

Biomass fed micro-gas turbine for decentr. energy generation in Tuscan



Department of Energy Engineering



### **Future Work**

- ✓Identification of a suitable site for installation (on going)
- ✓ Detailed plant design
- ✓ Plant construction and testing

iomass fed micro-gas turbine for decentr. energy generation in Tuscany

Internaional WorkShon "Rigenergy for a Sustainable Development" 2

. .