

BRAZILIAN ENERGY MATRIX		
> Primary Energy Production	%	
Non-Renewable energy	53.9	
Oil	43.1	
Natural gas	9.0	
Coal	1.4	
Uranium	0.4	
Renewable energy	46.1	
Hydraulic	14.2	
Wood	14.4	
Products of cane	14.7	
Other sources	2.8	
Source: BEN 2002	🙊 Copersucar (União)	

BRAZILIAN ETHANOL HISTORY "A SUMMARY"

FROM 1920 – 1928

Different levels of anhydrous ethanol in gasoline ≻ 1928

National plan for sugar, spirits and ethanol

> OCT / 1930

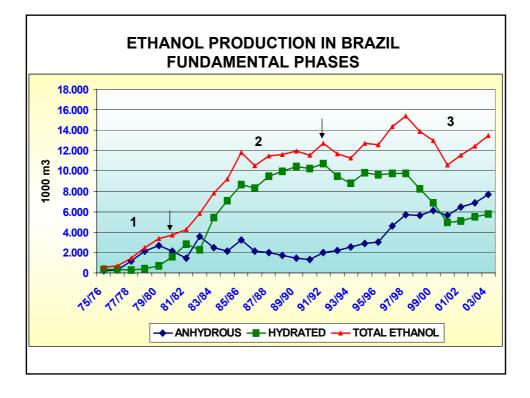
Ethanol as an important product for the brazilian sugarcane sector equilibrium

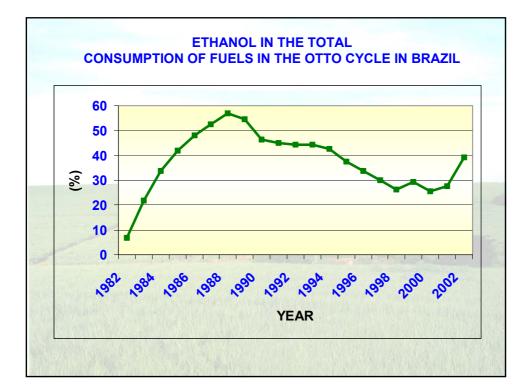
> 1931

All gasoline was imported and the importer received the payment if used gasohol (5% ethanol)

≻ 1941

10% ethanol in gasoline


> 1945


Quota system for producers (sugar and ethanol)

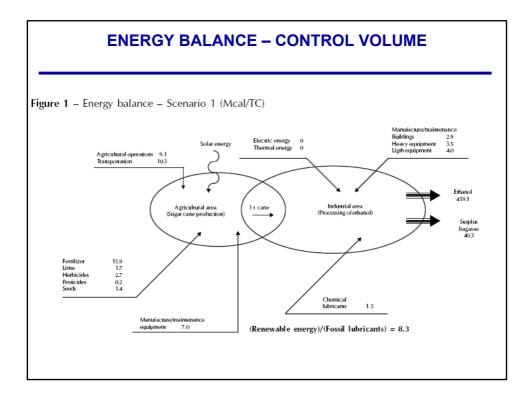
> 1973 and 1980

"Oil shocks" and ethanol as the most important product for the sugarcane sector $% \left({{{\mathbf{r}}_{i}}} \right) = {{\mathbf{r}}_{i}} \right)$

	Million M ³		
Brazil	12.50 (14.4		
USA	6.50 (10.6)		
China	3.00		
EU	2.00		
India	1.70		
Russia	1.30		
Saudi Arabia	0.40		
South Africa	0.38		
Others	5.22		
TOTAL	33.00		
	🐼 COPERSUCAR (UNIÃO		

ENERGY BALANCE IN CANE AND ETHANOL PRODUCTION ENERGY LEVELS CONSIDERED

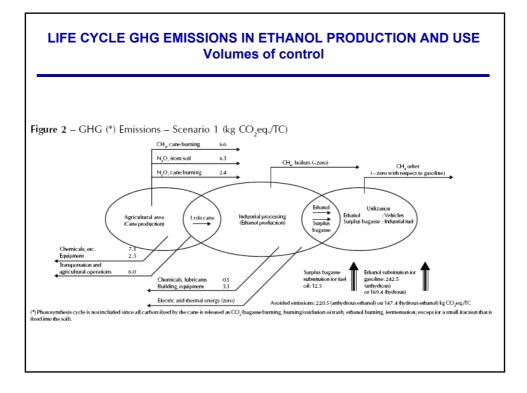
- LEVEL 1 only fuels and electric energy consumed (direct energy input).
- LEVEL 2 add energy consumed in the production of chemicals and other products used (fertilizers, lime, seeds, herbicides, lubricants, sulfuric acid, etc.)
- LEVEL 3 add energy consumed in the production of equipment, buildings and their maintenance.

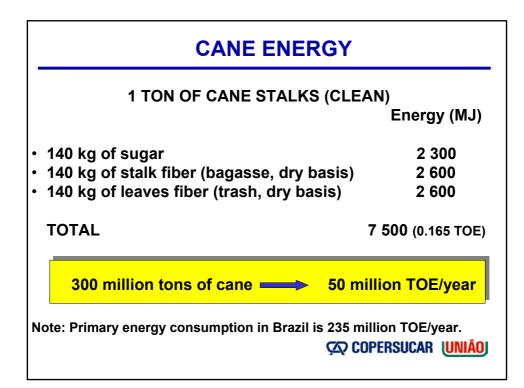

COPERSUCAR UNIÃO

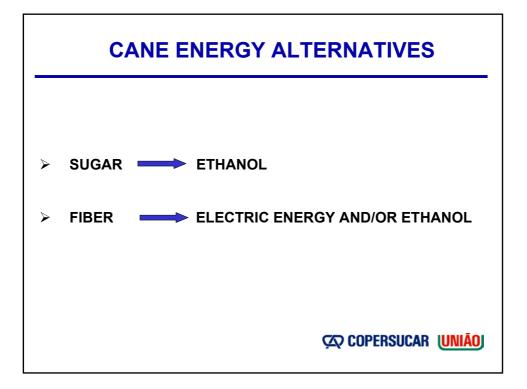
ENERGY BALANCE IN CANE AND ETHANOL PRODUCTION LIFE CYCLE ANALYSIS: NON – RENEWABLE ENERGY INPUT

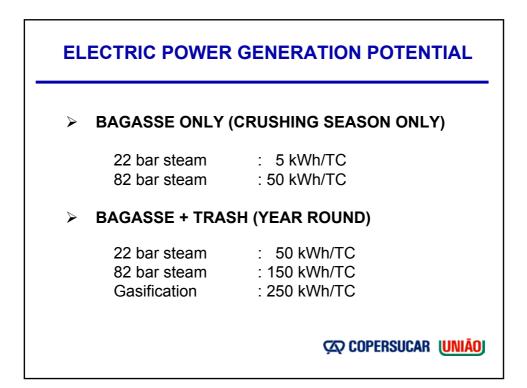
	AVERAGE (MJ/TC)	BEST VALUES (MJ/TC)
Sugar Cane Production (total)	201.80	192.00
Agricultural Operations	38.10	38.10
Cane transportation	42.90	36.50
Fertilizers	66.50	63.40
Lime, herbicides, etc.	19.20	19.20
Seeds	5.90	5.60
Equipment	29.20	29.20
Ethanol Production (total)	49.40	39.70
Electricity (bought)	0.00	0.00
Chemicals and Lubricants	6.30	6.30
Buildings	12.00	9.30
Equipment	31.10	24.10
	<u>کې</u> در	opersucar (<mark>Uniā</mark>)

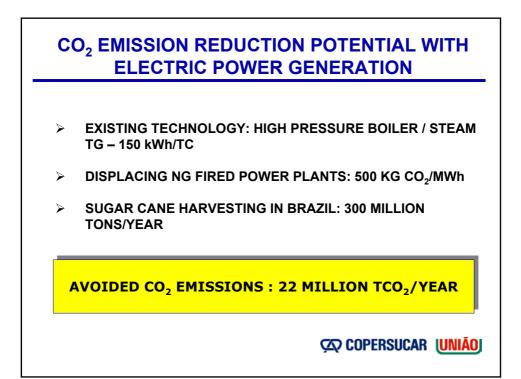
EXTERNAL ENERGY FLOWS (AGRICULTURE + INDUSTRY)

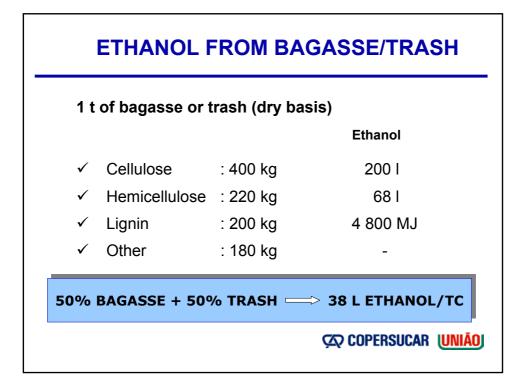

-	Input	Output	Input	Output
Agriculture Industry Ethanol produced Bagasse surplus	201.80 49.40	1921.30 168.70	192.00 39.70	2051.10 316.40
Total (external flows)	251.20	2090.00	231.70	2367.50
Output/Input	8.3		1).2
			🙊 Copersi	icar (União)

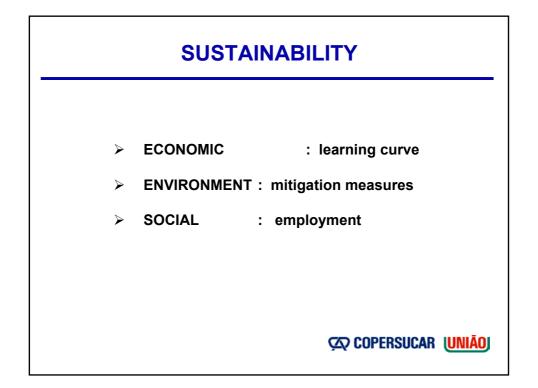


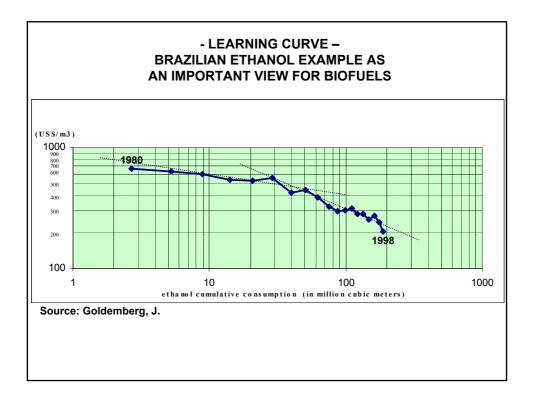

PROCESS	Corn ¹	Switchgrass ¹	Sugar cane ²
	(GJ/ha.yr)	(GJ/ha.yr)	(GJ/ha.yr)
Crop production energy comsump.	18.9	17,8	13.9
Biomass Energy	149.5 ³	220.2	297.14
Agricultural energy ratio	7.9	12.3	21.3
Ethanol production energy coms.	47.9	10.2	3.4
Energy in ethanol	67.1 ⁵	104.4	132.56
Total energy ratio	1.21	4.43	8.32

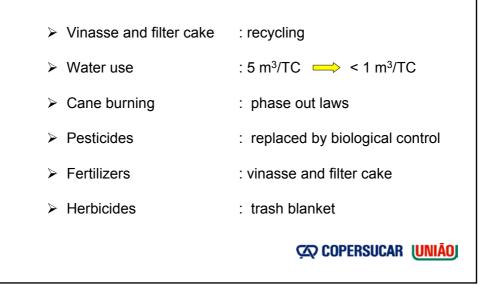

1- Source: ORNL, 2- Source: Copersucar/UNICAMP, 3-No credit for corn stover, 4- No credit for sugar cane leaves, 5- includes credits for co-products, 6-Includes credits for surplus bagasse 8%


LIFE CYCLE GHG EMISSIONS IN ETHANOL PRODUCTION AND USE				
	Kg CO ₂ e Average	quiv./t cane Best Values		
EMISSIONS				
Fossil Fuels	19.2	17.7		
Methane from cane burning	9.0	9.0		
 N₂O from soil 	6.3	6.3		
• Total	34.5	33.0		
AVOIDED EMISSIONS (Fossil Fuel Displacement)				
Use of excess bagasse	12.5	23.3		
Use of ethanol	242.5(A) 169.4(H)	259.0(A) 180.8(H)		
Total avoided emissions	255.0(A) 181.9(H)	282.3(A) 204.2(H)		
NET AVOIDED EMISSIONS	220.5(A) 147.4(H) 249.3(A) 171.1(H)		
Anhydrous ethanol	2.6 to 2.7 t CO ₂ eq	uiv/m ³ ethanol		
Hydrated ethanol	1.8 to 1.9 t CO ₂ ec	uiv/m³ ethanol		
Notes: (A) Anhydrous ethanol (H) Hydrated ethanol	<u>کې</u> (opersucar (<mark>União</mark>)		









ENVIRONMENT MITIGATION MEASURES

Employment Employment in the production of the vehicle and of fuel men-year per thousand vehicles			
MEN YEAR GENERATED	ALCOHOL VEHICLES	"C" GASOLINE VEHICLES	"A" GASOLINE VEHICLES
Vehicle Production	51.3	51.3	51.3
Fuel Production In 15 years of average life	1,482.0	369.9 ⁽³⁾	18.8
Total Employments	1,533.36	421,2	70,1
Ratio of employments per type of vehicle	21.87 ⁽¹⁾	6.01	1 ⁽²⁾
(1) Considering that an alcohol driven vehicle consumes, on average, 2.600 liters of hydrated alcohol per year, during average work life of 15 years, and that the production of one million liters of alcohol per year, generates 38 direct jobs on average in Brazil.			
(2) Considering that a gasoline driven vehicle spend million liters of gasoline per year generates 0.6 extracting 1 million barrels/day of petroleum and	direct jobs in the country.		
(3) 24% ethanol and 76% gasoline	Source: Ul	NICA / ANFAVEA / Mat	triz Energética / Petro