Production of Biofuels

JILIN FUEL ETHANOL Co., LTD in operation since October 26, 2003

Ing. Josef MODL
Vogelbusch GmbH

www.vogelbusch.com
1. Introduction
2. Why Bioethanol?
3. Jilin Fuel Ethanol Project
4. Conceptual Design
VB today

independent

95 Personal employed
at Vienna Headquarters
(March 2004)

own R&D Laboratories

Branch Offices
in Houston (1989) and
Hong Kong (1990)

About 8 mio lpd in production - 5.2 mio secured order
alcohol market situation
percentage based on market value

total alcohol market

- America: 68.7%
- Europe: 44.8%
- Asia: 16.3%
- Africa: 0.5%
- Australia: 0.8%
- Africa: 1.6%
- Australia: 2.7%
- Asia: 26.6%

total alcohol market **without fuel alcohol**
Change in EU greenhouse gas emissions acc. Kyoto protocol

- Business as usual
- with current policies
- with additional policies
- Kyoto target path

source: EU Commission 2003
Change in EU greenhouse gas emissions by sector and pollutant (1990-1999)

Source: BAFF
Decrease of CO₂ emissions - a challenge for automobile industry

- automobile industry has committed itself to decrease CO₂ emissions to 140 g/km by 2008 (approx. fuel consumption: 5.7 l/100km)
- Arthur D. Little: Further decrease to 120 g/km until 2012 causes additional costs of approx. € 4,000 /vehicle.

→ Biofuels are a valuable, alternative option for the automobile industry to reach the CO₂ emission targets and represent an inexpensive solution for consumers.
Renewable Energy Resources

Solid Energy-Resources
(waste wood, straw, agricultural waste, e.g. bagasse) direct incinerated or via thermal gasifying

Biogas – Anaerobic treatment of biological contaminated waste water

Bio-Fuel:

» Biodiesel – Methylester of fatty acids
 (most common raps seeds or waste oil)

» Bioethanol
 (starch, sugar)
Feedstocks

- **cellulose**
 - [Image of forest]
 - Question mark

- **starch**
 - wheat - barley - corn - potato - cassava – sweet potato

- **sugar**
 - cane molasses
 - beet molasses
 - syrups
 - juices

www.vogelbusch.com
Application of fuel ethanol in EU

- **bioethanol**
 - direct blends (E-5)
 - ternary blends gasoline/ETBE/ethanol
 - ETBE

- **standard for use of ethanol in motor fuels DIN EN 228**
 - Max ethanol content – 5.0 % (v/v)
 - Max. ether content (e.g. MTBE/ETBE) - 15.0 % (v/v)
 - Max. oxygen content – 2.7 % (m/m)
 - Max. steam pressure (summer) – 60 kPa

- **application therefore limited to ETBE and E-5 blends**

- **no change of these parameters with implementation of EURO IV Standard 2005**
Process Steps Overview

stillage drying
stillage evaporation
distillation/rectification/dehydration
fermentation
raw material preparation
Energy Saving - within the Process Steps

- Heat recovery in the raw material preparation
- Operation of the distillation / rectification as a multipressure column system
- Dehydration by molecular sieve technology
- Stillage evaporation as a multistage system
- Mechanical vapor recompression as an option for cheap electrical energy
Energy Saving - via Process Interconnections

- Stillage recycling to raw material preparation
- Using waste vapors from driers for final stillage concentration
- Using expansion vapors of steam condensates from distillation and driers for stillage evaporation
Conceptual Design

Saccharification
FLOWS

Fermentation
FLOWS

Destillation
FLOWS

Mole-Sieve
FLOWS
Fermentation
Destillation
Molecular Sieve
DDGS / Energy
Tradition of Ethanol Blends in the USA

But only in the 1970s

• Example: Ford Taurus flexible Fuel Vehicle 2003
Ladies & Gentleman—Thank You—
And see you in Jilin!
gan bei